首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A symplectic polarity of a building \(\varDelta \) of type \(\mathsf {E_6}\) is a polarity whose fixed point structure is a building of type \(\mathsf {F_4}\) containing residues isomorphic to symplectic polar spaces (i.e., so-called split buildings of type \(\mathsf {F_4}\)). In this paper, we show in a geometric way that every building of type \(\mathsf {E_6}\) contains, up to conjugacy, a unique class of symplectic polarities. We also show that the natural point-line geometry of each split building of type \(\mathsf {F_4}\) fully embedded in the natural point-line geometry of \(\varDelta \) arises from a symplectic polarity.  相似文献   

3.
In this note the well-ordering principle for the derivative \(\mathsf{g}^{\prime }\) of normal functions \(\mathsf{g}\) on ordinals is shown to be equivalent to the existence of arbitrarily large countable coded \(\omega \)-models of the well-ordering principle for the function \(\mathsf{g}\).  相似文献   

4.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

5.
The partition algebra \(\mathsf {P}_k(n)\) and the symmetric group \(\mathsf {S}_n\) are in Schur–Weyl duality on the k-fold tensor power \(\mathsf {M}_n^{\otimes k}\) of the permutation module \(\mathsf {M}_n\) of \(\mathsf {S}_n\), so there is a surjection \(\mathsf {P}_k(n) \rightarrow \mathsf {Z}_k(n) := \mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\), which is an isomorphism when \(n \ge 2k\). We prove a dimension formula for the irreducible modules of the centralizer algebra \(\mathsf {Z}_k(n)\) in terms of Stirling numbers of the second kind. Via Schur–Weyl duality, these dimensions equal the multiplicities of the irreducible \(\mathsf {S}_n\)-modules in \(\mathsf {M}_n^{\otimes k}\). Our dimension expressions hold for any \(n \ge 1\) and \(k\ge 0\). Our methods are based on an analog of Frobenius reciprocity that we show holds for the centralizer algebras of arbitrary finite groups and their subgroups acting on a finite-dimensional module. This enables us to generalize the above result to various analogs of the partition algebra including the centralizer algebra for the alternating group acting on \(\mathsf {M}_n^{\otimes k}\) and the quasi-partition algebra corresponding to tensor powers of the reflection representation of \(\mathsf {S}_n\).  相似文献   

6.
We produce a model of \(\mathsf {ZFA}+ \mathsf {PAC}\) such that no outer model of \(\mathsf {ZFAC}\) has the same pure sets, answering a question asked privately by Eric Hall.  相似文献   

7.
Let \(\mathcal {X}\) be a resolving subcategory of an abelian category. In this paper we investigate the singularity category \(\mathsf {D_{sg}}(\underline{\mathcal {X}})=\mathsf {D^b}({\mathsf {mod}}\,\underline{\mathcal {X}})/\mathsf {K^b}({\mathsf {proj}}({\mathsf {mod}}\,\underline{\mathcal {X}}))\) of the stable category \(\underline{\mathcal {X}}\) of \(\mathcal {X}\). We consider when the singularity category is triangle equivalent to the stable category of Gorenstein projective objects, and when the stable categories of two resolving subcategories have triangle equivalent singularity categories. Applying this to the module category of a Gorenstein ring, we prove that the complete intersections over which the stable categories of resolving subcategories have trivial singularity categories are the simple hypersurface singularities of type \((\mathsf {A}_1)\). We also generalize several results of Yoshino on totally reflexive modules.  相似文献   

8.
Let \(\mathcal {R}\) be a prime ring, \(\mathcal {Z(R)}\) its center, \(\mathcal {C}\) its extended centroid, \(\mathcal {L}\) a Lie ideal of \(\mathcal {R}, \mathcal {F}\) a generalized skew derivation associated with a skew derivation d and automorphism \(\alpha \). Assume that there exist \(t\ge 1\) and \(m,n\ge 0\) fixed integers such that \( vu = u^m\mathcal {F}(uv)^tu^n\) for all \(u,v \in \mathcal {L}\). Then it is shown that either \(\mathcal {L}\) is central or \(\mathrm{char}(\mathcal {R})=2, \mathcal {R}\subseteq \mathcal {M}_2(\mathcal {C})\), the ring of \(2\times 2\) matrices over \(\mathcal {C}, \mathcal {L}\) is commutative and \(u^2\in \mathcal {Z(R)}\), for all \(u\in \mathcal {L}\). In particular, if \(\mathcal {L}=[\mathcal {R,R}]\), then \(\mathcal {R}\) is commutative.  相似文献   

9.
Curves of genus \(g\) which admit a map to \(\mathbf {P}^{1}\) with specified ramification profile \(\mu\) over \(0\in \mathbf {P}^{1}\) and \(\nu\) over \(\infty\in \mathbf {P}^{1}\) define a double ramification cycle \(\mathsf{DR}_{g}(\mu,\nu)\) on the moduli space of curves. The study of the restrictions of these cycles to the moduli of nonsingular curves is a classical topic. In 2003, Hain calculated the cycles for curves of compact type. We study here double ramification cycles on the moduli space of Deligne-Mumford stable curves.The cycle \(\mathsf{DR}_{g}(\mu,\nu)\) for stable curves is defined via the virtual fundamental class of the moduli of stable maps to rubber. Our main result is the proof of an explicit formula for \(\mathsf{DR}_{g}(\mu,\nu)\) in the tautological ring conjectured by Pixton in 2014. The formula expresses the double ramification cycle as a sum over stable graphs (corresponding to strata classes) with summand equal to a product over markings and edges. The result answers a question of Eliashberg from 2001 and specializes to Hain’s formula in the compact type case.When \(\mu=\nu=\emptyset\), the formula for double ramification cycles expresses the top Chern class \(\lambda_{g}\) of the Hodge bundle of \(\overline {\mathcal{M}}_{g}\) as a push-forward of tautological classes supported on the divisor of non-separating nodes. Applications to Hodge integral calculations are given.  相似文献   

10.
Let \(\mathfrak {g}\) be a simple complex Lie algebra and let \(\mathfrak {t} \subset \mathfrak {g}\) be a toral subalgebra of \(\mathfrak {g}\). As a \(\mathfrak {t}\)-module \(\mathfrak {g}\) decomposes as
$$\mathfrak{g} = \mathfrak{s} \oplus \left( \oplus_{\nu \in \mathcal{R}}~ \mathfrak{g}^{\nu}\right)$$
where \(\mathfrak {s} \subset \mathfrak {g}\) is the reductive part of a parabolic subalgebra of \(\mathfrak {g}\) and \(\mathcal {R}\) is the Kostant root system associated to \(\mathfrak {t}\). When \(\mathfrak {t}\) is a Cartan subalgebra of \(\mathfrak {g}\) the decomposition above is nothing but the root decomposition of \(\mathfrak {g}\) with respect to \(\mathfrak {t}\); in general the properties of \(\mathcal {R}\) resemble the properties of usual root systems. In this note we study the following problem: “Given a subset \(\mathcal {S} \subset \mathcal {R}\), is there a parabolic subalgebra \(\mathfrak {p}\) of \(\mathfrak {g}\) containing \(\mathcal {M} = \oplus _{\nu \in \mathcal {S}} \mathfrak {g}^{\nu }\) and whose reductive part equals \(\mathfrak {s}\)?”. Our main results is that, for a classical simple Lie algebra \(\mathfrak {g}\) and a saturated \(\mathcal {S} \subset \mathcal {R}\), the condition \((\text {Sym}^{\cdot }(\mathcal {M}))^{\mathfrak {s}} = \mathbb {C}\) is necessary and sufficient for the existence of such a \(\mathfrak {p}\). In contrast, we show that this statement is no longer true for the exceptional Lie algebras F4,E6,E7, and E8. Finally, we discuss the problem in the case when \(\mathcal {S}\) is not saturated.
  相似文献   

11.
Let \(\bar{p}(n)\) denote the number of overpartitions of \(n\). Recently, Fortin–Jacob–Mathieu and Hirschhorn–Sellers independently obtained 2-, 3- and 4-dissections of the generating function for \(\bar{p}(n)\) and derived a number of congruences for \(\bar{p}(n)\) modulo 4, 8 and 64 including \(\bar{p}(8n+7)\equiv 0 \pmod {64}\) for \(n\ge 0\). In this paper, we give a 16-dissection of the generating function for \(\bar{p}(n)\) modulo 16 and show that \(\bar{p}(16n+14)\equiv 0\pmod {16}\) for \(n\ge 0\). Moreover, using the \(2\)-adic expansion of the generating function for \(\bar{p}(n)\) according to Mahlburg, we obtain that \(\bar{p}(\ell ^2n+r\ell )\equiv 0\pmod {16}\), where \(n\ge 0\), \(\ell \equiv -1\pmod {8}\) is an odd prime and \(r\) is a positive integer with \(\ell \not \mid r\). In particular, for \(\ell =7\) and \(n\ge 0\), we get \(\bar{p}(49n+7)\equiv 0\pmod {16}\) and \(\bar{p}(49n+14)\equiv 0\pmod {16}\). We also find four congruence relations: \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n) \pmod {16}\) for \(n\ge 0\), \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {32}\) where \(n\) is not a square of an odd positive integer, \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {64}\) for \(n\not \equiv 1,2,5\pmod {8}\) and \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {128}\) for \(n\equiv 0\pmod {4}\).  相似文献   

12.
Let \(\mathcal{U}\) be the class of all unipotent monoids and \(\mathcal{B}\) the variety of all bands. We characterize the Malcev product \(\mathcal{U} \circ \mathcal{V}\) where \(\mathcal{V}\) is a subvariety of \(\mathcal{B}\) low in its lattice of subvarieties, \(\mathcal{B}\) itself and the subquasivariety \(\mathcal{S} \circ \mathcal{RB}\), where \(\mathcal{S}\) stands for semilattices and \(\mathcal{RB}\) for rectangular bands, in several ways including by a set of axioms. For members of some of them we describe the structure as well. This succeeds by using the relation \(\widetilde{\mathcal{H}}= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}\), where \(a\;\,\widetilde{\mathcal{L}}\;\,b\) if and only if a and b have the same idempotent right identities, and \(\widetilde{\mathcal{R}}\) is its dual.We also consider \((\mathcal{U} \circ \mathcal{RB}) \circ \mathcal{S}\) which provides the motivation for this study since \((\mathcal{G} \circ \mathcal{RB}) \circ \mathcal{S}\) coincides with completely regular semigroups, where \(\mathcal{G}\) is the variety of all groups. All this amounts to a generalization of the latter: \(\mathcal{U}\) instead of \(\mathcal{G}\).  相似文献   

13.
For a large class of finite dimensional inner product spaces V, over division \(*\)-rings F, we consider definable relations on the subspace lattice \(\mathsf{L}(V)\) of V, endowed with the operation of taking orthogonals. In particular, we establish translations between the relevant first order languages, in order to associate these relations with definable and invariant relations on F—focussing on the quantification type of defining formulas. As an intermediate structure we consider the \(*\)-ring \(\mathsf{R}(V)\) of endomorphisms of V, thereby identifying \(\mathsf{L}(V)\) with the lattice of right ideals of \(\mathsf{R}(V)\), with the induced involution. As an application, model completeness of F is shown to imply that of \(\mathsf{R}(V)\) and \(\mathsf{L}(V)\).  相似文献   

14.
Let \(T_n(\mathbb {F})\) and \(UT_n(\mathbb {F})\) be the semigroups of all upper triangular \(n\times n\) matrices and all upper triangular \(n\times n\) matrices with 0s and/or 1s on the main diagonal over a field \(\mathbb {F}\) with \(\mathsf {char}(\mathbb {F})=0\), respectively. In this paper, we address the finite basis problem for \(T_2(\mathbb {F})\) and \(UT_2(\mathbb {F})\) as involution semigroups under the skew transposition. By giving a sufficient condition under which an involution semigroup is nonfinitely based, we show that both \(T_2(\mathbb {F})\) and \(UT_2(\mathbb {F})\) are nonfinitely based, and that there is a continuum of nonfinitely based involution monoid varieties between the involution monoid variety \(\mathsf {var} UT_2(\mathbb {F})\) generated by \(UT_2(\mathbb {F})\) and the involution monoid variety \(\mathsf {var} T_2(\mathbb {F})\) generated by \(T_2(\mathbb {F})\). Moreover, \(\mathsf {var} UT_2(\mathbb {F})\) cannot be defined within \(\mathsf {var} T_2(\mathbb {F})\) by any finite set of identities.  相似文献   

15.
Let \(\texttt {R}\) be a finite commutative Frobenius ring and \(\texttt {S}\) a Galois extension of \(\texttt {R}\) of degree m. For positive integers k and \(k'\), we determine the number of free \(\texttt {S}\)-submodules \(\mathcal {B}\) of \(\texttt {S}^\ell \) with the property \(k=\texttt {rank}_\texttt {S}(\mathcal {B})\) and \(k'=\texttt {rank}_\texttt {R}(\mathcal {B}\cap \texttt {R}^\ell )\). This corrects the wrong result (Bill in Linear Algebr Appl 22:223–233, 1978, Theorem 6) which was given in the language of codes over finite fields.  相似文献   

16.
We deal with Morrey spaces on bounded domains \(\Omega \) obtained by different approaches. In particular, we consider three settings \(\mathcal {M}_{u,p}(\Omega )\), \(\mathbb {M}_{u,p}(\Omega )\) and \(\mathfrak {M}_{u,p}(\Omega )\), where \(0<p\le u<\infty \), commonly used in the literature, and study their connections and diversities. Moreover, we determine the growth envelopes \(\mathfrak {E}_{\mathsf {G}}(\mathcal {M}_{u,p}(\Omega ))\) as well as \(\mathfrak {E}_{\mathsf {G}}(\mathfrak {M}_{u,p}(\Omega ))\), and obtain some applications in terms of optimal embeddings. Surprisingly, it turns out that the interplay between p and u in the sense of whether \(\frac{n}{u}\ge \frac{1}{p}\) or \(\frac{n}{u} < \frac{1}{p}\) plays a decisive role when it comes to the behaviour of these spaces.  相似文献   

17.
Being motivated by the problem of deducing \(\mathsf {L}^{p}\)-bounds on the second fundamental form of an isometric immersion from \(\mathsf {L}^{p}\)-bounds on its mean curvature vector field, we prove a nonlinear Calderón–Zygmund inequality for maps between complete (possibly noncompact) Riemannian manifolds.  相似文献   

18.
19.
The theory of countable partially ordered sets (posets) is developed within a weak subsystem of second order arithmetic. We within \(\mathsf {RCA_0}\) give definitions of notions of the countable order theory and present some statements of countable lattices equivalent to arithmetical comprehension axiom over \(\mathsf {RCA_0}\). Then we within \(\mathsf {RCA_0}\) give proofs of Knaster–Tarski fixed point theorem, Tarski–Kantorovitch fixed point theorem, Bourbaki–Witt fixed point theorem, and Abian–Brown maximal fixed point theorem for countable lattices or posets. We also give Reverse Mathematics results of the fixed point theory of countable posets; Abian–Brown least fixed point theorem, Davis’ converse for countable lattices, Markowski’s converse for countable posets, and arithmetical comprehension axiom are pairwise equivalent over \(\mathsf {RCA_0}\). Here the converses state that some fixed point properties characterize the completeness of the underlying spaces.  相似文献   

20.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号