首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
1H Magnetic resonance imaging and 31P magnetic resonance spectroscopy (MRS) have been carried out in experimental rodent filariasis, i.e., Acanthocheilonema viteae infection in the rodent host, Mastomys coucha. The T2-weighted image of the infected host shows fine hyperintense thread like structures of adult filariid nests in the cervical region. 31P MRS of normal and infected hosts, localized over the same region of interest, show seven major peaks corresponding to phosphomonoesters (including glucose-6-phosphate, fructose-6-phosphate, fructose-1-6-diphosphate, phosphorylcholine, and adenine monophosphate or AMP), inorganic phosphate, glycerophosphorylcholine, phosphoenolpyruvate, phosphocreatine and nucleoside di- and tri-phosphates. Concentrations of phosphomonoesters (PMEs) are higher in the normal rodent compared with the infected ones. In vivo 31P MRS provides a non-invasive assessment of tissue bioenergetics and phospholipid metabolism.  相似文献   

4.
PURPOSE: The purpose of this study was to determine the pre- and postpubertal 1H magnetic resonance spectroscopic characteristics of the normal testis to establish baseline values for further clinical studies. MATERIALS AND METHODS: The subjects consisted of male volunteers, of whom 19 were prepubertal with ages between 7 and 13 years and 24 were postpubertal with ages between 19 and 39 years. Their testes were evaluated at 1.5 T with magnetic resonance spectroscopy; in addition, testis volumes were measured. Major metabolite peaks were identified and their ratios were calculated. Metabolite differences of testis between pre- and postpubertal age were analyzed. RESULTS: Major constituents of spectra were 3.21 ppm choline and 0.9-1.3 ppm lipid peaks. At the echo time (TE) spectrum of 31 ms, choline/lipid ratios ranged from 0.35 to 8.30 (mean=1.87) in postpubertal males and from 0.06 to 5.45 (mean=0.88) in prepubertal males (P<.013). At the TE spectrum of 136 ms, choline/lipid ratios ranged from 0.66 to 15.42 (mean=4.09) in postpubertal males and from 0.05 to 4.91 (mean=0.9) in prepubertal males (P<.016). CONCLUSIONS: Choline/lipid ratio was higher in the postpubertal period. The existence of higher choline peak in that age group should be due to the initiation of spermatogenesis. The decrease in the lipid peak may represent the effect of testosterone on testicular tissue or may be due to histochemical changes initiated by puberty. The significant decrease in choline/lipid ratio noted after puberty could represent the presence of spermatogenesis. This hypothesis should be evaluated by further studies on postpubertal subjects with impaired spermatogenesis.  相似文献   

5.
We introduce the concept of amplifying the transverse magnetic fields produced and/or detected with inductive coils in magnetic resonance settings by using the reversible transverse susceptibility properties of magnetic nanostructures. First, we describe the theoretical formalism of magnetic flux amplification through the coil in the presence of a large perpendicular DC magnetic field (typical of magnetic resonance systems) achieved through the singularity in the reversible transverse susceptibility in anisotropic single domain magnetic nanoparticles. We experimentally demonstrate the concept of transverse magnetic flux amplification in an inductive coil system using oriented nanoparticles with uni-axial magnetic anisotropy. We also propose a composite ferromagnetic/anti-ferromagnetic core/shell nanostructure system with uni-directional magnetic anisotropy that, in principle, provides maximal transverse magnetic flux amplification.  相似文献   

6.
Brain alcohol was measured in rhesus monkeys (Macaca mulatta) by proton magnetic resonance spectroscopy (MRS) following acute nasogastric alcohol administration (0.8 g/kg). Monkeys were anesthetized with ketamine and xylazine. A 1.5 T whole body imager and a 3-inch surface coil were used to acquire TE 30 and 270 ms spectra from a 7.5 cc voxel localized with a stimulated echo (STEAM) sequence. Venous blood samples were collected during spectral acquisitions for gas chromatographic determination of temporally concordant blood alcohol levels (BALs). Acute alcohol administration did not alter the resonance areas of N-acetylaspartate/N-acetyl containing compounds (NAA), choline containing compounds, or total creatine. The NAA resonance was used as an internal standard to calculate approximate brain alcohol concentrations, which averaged 27 ± 3% and 27 ± 8% of temporally concordant BALs (T2-corrected TE 30 and TE 270 ms spectra, respectively). In addition to reconfirming results from prior studies finding incomplete detection of brain alcohol with MRS, these results demonstrate the feasibility of measuring brain alcohol in anesthetized nonhuman primates to examine relationships between alcohol exposure history and MRS-visibility of brain alcohol.  相似文献   

7.
Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.  相似文献   

8.
The methodology for obtaining two- and three-dimensional magnetic resonance images by using azimuthally symmetric dipolar magnetic fields from ferromagnetic spheres is described. We utilize the symmetric property of a geometric sphere in the presence of a large externally applied magnetic field to demonstrate that a complete two- or three-dimensional structured rendering of a sample can be obtained without the motion of the sample relative to the sphere. Sequential positioning of the integrated sample-sphere system in an external magnetic field at various angular orientations provides all the required imaging slices for successful computerized tomographic image reconstruction. The elimination of the requirement to scan the sample relative to the ferromagnetic tip in this imaging protocol is a potentially valuable simplification compared to previous scanning probe magnetic resonance imaging proposals.  相似文献   

9.
In a previous nuclear magnetic resonance (NMR) study we observed that the NMR spectra of water in both surfacted and ionic ferrofluids are asymmetric and several orders of magnitude wider than the one of pure water. It has been proposed that this effect is produced by extremely strong magnetic field gradients in the intergrain volume and/or by surface interactions between the carrier liquid molecules and the grains surface. In the case of aqueous ionic ferrofluids the latter possibility should be interpreted as electric interactions between water (polar) molecules and the charges in the grain surface.

In this work we study a series of ionic and surfacted ferrofluids prepared at different magnetic grain concentrations and sizes, and with different surface charge densities. Our experiments clearly show that the sign and the density of the electric charge on the magnetic grains have no influence on NMR spectra. On the other hand, spectral widths increase with the magnetic grain concentration.  相似文献   


10.
蒋卫平  王琦  周欣 《物理》2013,42(12):826-837
文章简要介绍了核磁共振的基本原理,详细阐述了液体核磁共振在蛋白质结构、功能和动力学等方面的研究进展,论述了增强固体核磁共振分辨率的方法及其应用,讲述了磁共振成像的原理并综述了不同磁共振成像方法的应用研究进展,并对核磁共振的发展作了展望。  相似文献   

11.
12.
Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.  相似文献   

13.
N D Sen Gupta 《Pramana》1973,1(4):165-171
The phenomenon of magnetic resonance is studied by considering the transverse oscillatory field as superposition of two oppositely rotating fields. One of the rotating fields is taken as strong and the other relatively weak.  相似文献   

14.
Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite’s body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 104 erg/cm3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.  相似文献   

15.
Triple-negative breast cancer (TNBC), which characterized by distinct biological and clinical pathological features, has a worse prognosis because the lack of effective therapeutic targets. Breast MR is the most accurate imaging modality for diagnosis of breast cancer currently. MR imaging recognition could assist in diagnosis, pretreatment planning and prognosis evaluation of TNBC. MR findings of a larger solitary lesion, mass with smooth mass margin, high signal intensity on T2-weighted images and rim enhancement are typical MRI features associated with TNBC. Further work is necessary about the clinical application of dynamic contrast-enhanced MR imaging (DCE-MRI), DWI and MRS.  相似文献   

16.
The expression for the angular dependence of the first moment of the nuclear magnetic resonance central transition (± 1/2 ↔ 1/2) lineshapes of a quadrupolar nuclei with half integer spins in a disordered solid is derived and used for investigation of the structural distortions in LiNbO3.  相似文献   

17.
18.

Objectives

As a unique tool to assess metabolic fluxes noninvasively, 13C magnetic resonance spectroscopy (MRS) could help to characterize and understand malignancy in human tumors. However, its low sensitivity has hampered applications in patients. The aim of this study was to demonstrate that with sensitivity-optimized localized 13C MRS and intravenous infusion of [1-13C]glucose under euglycemia, it is possible to assess the dynamic conversion of glucose into its metabolic products in vivo in human glioma tissue.

Materials and Methods

Measurements were done at 3 T with a broadband single RF channel and a quadrature 13C surface coil inserted in a 1H volume coil. A 1H/13C polarization transfer sequence was applied, modified for localized acquisition, alternatively in two (50 ml) voxels, one encompassing the tumor and the other normal brain tissue.

Results

After about 20 min of [1-13C]glucose infusion, a [3-13C]lactate signal appeared among several resonances of metabolic products of glucose in MR spectra of the tumor voxel. The resonance of [3-13C]lactate was absent in MR spectra from contralateral tissue. In addition, the intensity of [1-13C]glucose signals in the tumor area was about 50% higher than that in normal tissue, likely reflecting more glucose in extracellular space due to a defective blood–brain barrier. The signal intensity for metabolites produced in or via the tricarboxylic acid (TCA) cycle was lower in the tumor than in the contralateral area, albeit that the ratios of isotopomer signals were comparable.

Conclusion

With an improved 13C MRS approach, the uptake of glucose and its conversion into metabolites such as lactate can be monitored noninvasively in vivo in human brain tumors. This opens the way to assessing metabolic activity in human tumor tissue.  相似文献   

19.
While the inherent low sensitivity of in vivo MR spectroscopy motivated a trend towards higher magnetic fields, B(0), it has since become apparent that this increase does not seem to translate into the anticipated improvement in spectral resolution. This is attributed to the decrease of the transverse relaxation time, T(2)*, in vivo due to macro- and mesoscopic tissue susceptibility. Using spectral contrast-to-noise ratio (SCNR) arguments, we show that if in biological systems the linewidth (on the frequency scale) increases linearly with the field, the spectral resolution (in parts per million) improves approximately as the fifth-root of B(0) for chemically shifted lines and decreases as about B(0)(4/5) (in hertz) for a structure of J-coupled multiplets. It is also shown that for any given B(0) there is a unique voxel size that is optimal in spectral resolution, linking the spectral and spatial resolutions. Since in practical applications the spatial resolution may be dictated by the target anatomy, nomograms to determine the B(0) required to achieve the desired spectral resolution at that voxel size are presented. More generally, the scaling of the nomograms to determine the achievable spectral and spatial resolutions at any given field is described.  相似文献   

20.
Focused pathological evaluation of axillary lymph nodes in breast cancer is gaining importance. Nuclear magnetic resonance (NMR) spectroscopy that assesses the whole of the specimen has the potential in evaluating micrometastases. The biochemical changes associated with breast cancer metastases in axillary nodes by in vitro NMR and its use in the detection of axillary metastases in a clinical setting in comparison with conventional histopathology is presented in this study. Eighty-eight lymph nodes obtained from 30 patients with breast cancer were investigated. Histopathology revealed metastases in 20 nodes from 11 patients, while in vitro NMR spectroscopy revealed metastases in 22 nodes. Out of these 22 nodes, 16 were the same, which showed metastases on histopathology, while 6 nodes have shown metastases only on in vitro magnetic resonance spectroscopy (MRS). These 6 nodes with suspicion of metastases on MRS were subjected to reevaluation with serial sectioning and immunohistochemistry, but no additional metastases were revealed. Forty metabolites could be identified from the MR spectrum of lymph nodes. The levels of the glycerophosphocholine-phosphocholine (GPC-PC), choline, lactate, alanine and uridine diphosphoglucose were elevated significantly in nodes with metastases. In addition, the intensity ratio of GPC-PC/threonine (Thr) was higher in nodes with metastases, and using this as marker, MRS detected the axillary metastases with a sensitivity, specificity and accuracy of 80%, 91% and 88%, respectively. Neoadjuvant chemotherapy (NACT) lowered the concentrations of GPC-PC and GPC-PC/Thr ratio. The accuracy of MRS in detecting metastases was 75% in patients who received NACT (n=9) as compared to 96% in those who did not (n=21). Our results demonstrate the potential of in vitro MRS in characterizing the metabolite profile of the axillary nodes with breast cancer metastases. It detected axillary metastases with reasonable accuracy and can be complementary to histopathological evaluation and immunohistochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号