首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experimental circulating water loop has been constructed to study the deposition of hematite particles of average diameter 320 nm on polypropylene pipe walls in the ranges pH 4–11, Re 3300–17,700 at 25 °C. Real-time turbidimetric measurements were used to measure the deposited concentrations. Results showed that the deposition rate increased when pH decreased and when the flow rate increased. Adhesion was observed even under repulsive electrostatic conditions (pH > 7), where the surfaces of hematite and polypropylene were both negative, indicating that the kinetic energy of at least a part of the particles surpassed the electrostatic repulsive potentials. The experimental curves were fitted by a model assuming simultaneous adhesion and removal of particles, leading to adhesion and removal rate constants, whose values depend on pH and flow rate. Removal is negligible below pH 9.  相似文献   

2.
The use of lectins for microorganism biosensors fabrication is proposed. Lectins are immobilised onto a gold-plated quartz crystal for direct piezoelectric label-free transduction of the bacteria–lectin binding event using an electrochemical quartz crystal microbalance (EQCM). Concanavalin A (Con A) and Escherichia coli were used for the evaluation of the lectin immobilisation method and the biosensor performance. Adsorption on nonpolarised and polarised (−0.200 V) gold-coated quartz crystals and immobilisation through avidin–biotin binding were checked for Con A surface attachment. Lectin–bacteria binding was evaluated in all cases. With a crystal modified with Con A via avidin–biotin immobilisation we obtained a linear calibration plot between 5.0 × 106 and 2.0 × 107 cfu mL−1 by measuring frequency changes with E. coli concentration 1 h after bacteria addition. A remarkable increase in sensitivity was achieved when the analytical solution contained free biotinylated Con A, as a consequence of multiple lectin adhesion to Escherichia coli cell wall, which produced an accumulation of Con A–E. coli conjugates in the form of multilayers at the electrode surface. A detection limit of approximately 1.0 × 104 cfu mL−1 was achieved. Moreover nonspecific adsorptions were minimised. Using Con A and lectin from Arachis hypogaea, different response profiles were achieved for Escherichia coli, Staphylococcus aureus and Mycobacterium phlei, thus demonstrating the feasibility of bacteria discrimination. An approach involving filtering of free and lectin-bound bacteria and introduction of a filter in the measuring cell allowed a significant frequency change to be obtained for an E. coli concentration of 1.0 × 103 cfu mL−1 in order to further increase the sensitivity and discriminate between viable and nonviable cells; an approach using electrochemical measurements of bacterial catalase activity was also checked.  相似文献   

3.
We report a new approach for immunoassays based on magnetite nanoparticles for Escherichia coli (E. coli) detection using conductometric measurements. Biotinylated antibodies, anti-E. coli, were immobilized on streptavidin modified magnetite nanoparticles by biotin–streptavidin interaction. A layer of functionalized nanoparticles were directly immobilized on the conductometric electrode using glutaraldehyde cross-linking.The specific test with E. coli cells and the non specific test using Staphylococcus epidermidis (S. epidermidis) were investigated by conductometric measurements. Results show a good response as a function of antigen additions. The detection of 1 CFU/ml of E. coli induces a conductivity variation of 35 μS. The negative test shows good selectivity using the conductometric immunosensor. Conductometric measurements allow to detect 500 CFU/l.  相似文献   

4.
5.
This work explores how long-range non-specific interactions, resulting from small amounts of adsorbed fibrinogen, potentially influence bioadhesion. Such non-specific interactions between protein adsorbed on a biomaterial and approaching cells or bacteria may complement or even dominate ligand–receptor mating. This work considers situations where the biomaterial surface and the approaching model cells (micron-scale silica particles) exhibit strong electrostatic repulsion, as may be the case in diagnostics and lab-on-chip applications. We report that adsorbed fibrinogen levels near 0.5 mg/m2 produce non-specific fouling. For underlying surfaces that are less fundamentally repulsive, smaller amounts of adsorbed fibrinogen would have a similar effect. Additionally, it was observed that particle adhesion engages sharply and only above a threshold loading of fibrinogen on the collector. Also, in the range of ionic strength, I, below about 0.05 M, increases in I reduce the fibrinogen needed for microparticle capture, due to screening of electrostatic repulsions. Surprisingly, however, ionic strengths of 0.15 M reduce fibrinogen adsorption altogether. This observation opposes expectations based on DLVO arguments, pointing to localized electrostatic attractions and hydration effects to drive silica–fibrinogen adhesion. These behaviors are benchmarked against microparticle binding on silica surfaces carrying small amounts of a polycation, to provide insight into the role of electrostatics in fibrinogen-driven non-specific adhesion.  相似文献   

6.
The sucrose isomerase (SIase) gene from an efficient strain of Erwinia rhapontici NX-5 for isomaltulose hyperproduction was cloned and overexpressed in Escherichia coli. Protein sequence alignment revealed that SIase was a member of the glycoside hydrolase 13 family. The molecular mass of the purified recombinant protein was estimated at 66 kDa by SDS-PAGE. The SIase had an optimal pH and temperature of 5.0 and 30 °C, respectively, with a K m of 257 mmol/l and V max of 48.09 μmol/l/s for sucrose. To the best of our knowledge, the recombinant SIase has the most acidic optimum pH for isomaltulose synthesis. When the recombinant E. coli (pET22b- palI) cells were used for isomaltulose synthesis, almost complete conversion of sucrose (550 g/l solution) to isomaltulose was achieved in 1.5 h with high isomaltulose yields (87%). The immobilized E. coli cells remained stable for more than 30 days in a “batch”-type enzyme reactor. This indicated that the recombinant SIase could continuously and efficiently produce isomaltulose.  相似文献   

7.
The electrochemical surface plasmon resonance (ESPR) technique was used to investigate the electrodeposition of the charge-transfer complex (CTC) generated during electrooxidation of o-tolidine (o-TD) in pH 4.5 Britton–Robinson buffers and the effects of coexisting dermatan sulfate (DS). The peak-type surface plasmon resonance (SPR) responses (versus time) observed in the cyclic voltammetric experiments indicated the precipitation and dissolution of a poorly soluble CTC, an oxidation intermediate, formed during the redox switching of o-TD in a weakly acidic medium. The effects of potential scan rate and solution pH were examined. The height of the peak-type SPR response to the redox switching of the o-TD/CTC “couple” was notably enhanced by the introduction of DS, due to the formation of a mass-enhanced CTC-DS adduct, as also supported by UV–vis spectroelectrochemistry. The SPR signal responded linearly to the DS concentration up to 14 μmol L−1, with a limit of detection (LOD) down to 8 nmol L−1 (S/N = 3). The analytical performance of the ESPR technique was found to be better than that of the quartz crystal microbalance technique with an LOD value of 70 nmol L−1. The CTC-based ESPR assay is recommended as a new, highly sensitive and dynamically surface-regenerated biosensing technology for other species.  相似文献   

8.
Our earlier results concerning bacterial transport of an adhesion-deficient strain Comamonas sp. (DA001) in intact sediment cores from near South Oyster, VA demonstrated that grain size is the principle factor controlling bacterial retention, and that Fe and Al hydroxide mineral coatings are of secondary importance. The experimentally determined collision efficiency (α) was in the range of 0.003–0.026 and did not correlate with the Fe and Al concentration. This study attempts to theoretically predict α, and identifies factors responsible for the observed low α. The modified Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to calculate the total intersurface potential energy as a function of separation distance between bacterial and sediment surfaces and to provide insights into the relative importance of bacterial and sediment grain surface properties in controlling magnitude of α. Different models for calculating theoretical α were developed and compared. By comparing theoretical α values from different models with previously published experimental α values, it is possible to identify a suitable model for predicting α. When DA001 bacteria interact with quartz surfaces, the theoretical α best predicts experimental α when DA001 cells are reversibly attached to the secondary minimum of the energy interaction curve and α depends on the probability of escape from that energy well. No energy barrier opposes bacterial attachment to clean iron oxide surface of positive charge at sub-neutral pH, thus the model predicts α of unity. When the iron oxide is equilibrated with natural groundwater containing 5–10 ppm of dissolved organic carbon (DOC), its surface charge reverses, and the model predicts α to be on the order of 0.2. The theoretical for DA001 in the natural sediments from South Oyster, VA was estimated by representing the surface potential of the sediment as a patch-wise binary mixture of negatively charged quartz (ζ=−60 mV) and organic carbon coated Fe–Al hydroxides (ζ=−2 mV). Such a binary mixing approach generates α that closely matches the experimental α. This study demonstrates that it is possible to predict α from known bacterial and grain surface properties.  相似文献   

9.
Detecting and enumerating fecal coliforms, especially Escherichia coli, as indicators of fecal contamination, are essential for the quality control of supplied and recreational waters. We have developed a sensitive, inexpensive, and small-volume amperometric detection method for E. coli -galactosidase by bead-based immunoassay. The technique uses biotin-labeled capture antibodies (Ab) immobilized on paramagnetic microbeads that have been functionalized with streptavidin (bead–Ab). The bead–Ab conjugate captures E. coli from solution. The captured E. coli is incubated in Luria Bertani (LB) broth medium with the added inducer isopropyl -D-thiogalactopyranoside (IPTG). The induced -galactosidase converts p-aminophenyl -D-galactopyranoside (PAPG) into p-aminophenol (PAP), which is measured by amperometry using a gold rotating disc electrode. A good linear correlation (R2=0.989) was obtained between log cfu mL–1 E. coli and the time necessary to product a specific concentration of PAP. Amperometric detection enabled determination of 2×106 cfu mL–1 E. coli within a 30 min incubation period, and the total analysis time was less than 1 h. It was also possible to determine as few as 20 cfu mL–1 E. coli under optimized conditions within 6–7 h. This process may be easily adapted as an automated portable bioanalytical device for the rapid detection of live E. coli.  相似文献   

10.
meso-2,3-Butanediol (meso-2,3-BDO) is essential for the synthesis of various economically valuable biosynthetic products; however, the production of meso-2,3-BDO from expensive carbon sources is an obstacle for industrial applications. In this study, genes involved in the synthesis of 2,3-BDO in Klebsiella pneumoniae were identified and used to genetically modify Escherichia coli for meso-2,3-BDO production. Two 2,3-BDO biosynthesis genes—budA, encoding acetolactate, and meso-budC, encoding meso-SADH—from K. pneumoniae were cloned into the pUC18 plasmid and introduced into E. coli. In 2 l batch culture, the SGSB03 E. coli strain yielded meso-2,3-BDO at 0.31 g/gglucose (with a maximum of 15.7 g/lculture after 48 h) and 0.21 g/gcrude glycerol (with a maximum of 6.9 g/lculture after 48 h). Batch cultures were grown under optimized conditions (aerobic, 6% carbon source, 37 °C, and initial pH 7). To find the optimal culture conditions for meso-2,3-BDO production, we evaluated the enzyme activity of meso-SADH and the whole cell conversion yield (meso-2,3-BDO/acetoin) of the E. coli SGSB02, which contains pSB02. meso-SADH showed high enzyme activity at 30–37 °C and pH 7 (30.5–41.5 U/mg of protein), and the conversion yield of SGSB02 E. coli was highest at 37–42 °C and a pH of 7 (0.25–0.28 g meso-2,3-BDO/gacetoin).  相似文献   

11.
Nitrofurantoin (NFN) radiolabeling with technetium-99m (99mTc) was investigated using different concentration of the NFN, sodium pertechnetate (Na99mTcO4), reducing agent (SnCl2) at different pH ranges (5.1–6.00). The suitability of the 99mTc-NFN was evaluated in terms of the radiochemical purity (RCP) yield, in vitro stability in saline, serum, in vitro binding with E. coli, biodistribution in E. coli infected model rat (ERT), and scintigraphic accuracy in E. coli infected model rabbit (EBT). The superlative radiochemical succumb at 2.5 mg NFN, 125 μL of SnCl2 (1 μg/μL in 0.01 N HCl), 2.5 mCi of Na99mTcO4, at pH 5.2 at 30, 60, 90, and 120 min after reconstitution was 64.50 ± 0.11, 97.50 ± 0.16, 94.25 ± 0.10, 92.15 ± 0.14 and 90.75 ± 0.0.13%. The complex was found stable in saline and serum for 90% up to 120 min and showed 50–65% in vitro binding with E. coli. The absorption of the 99mTc-NFN, primarily at E. Coli infected (ECT) muscle of ERT was lower but after 60 min it went up to 7.25 ± 0.17%. The absorption in the blood, liver, spleen, stomach, intestines, inflamed muscle (N.T1) and normal muscle (N.T2) went down while in the kidney and urine it went up with time. The ratio of the ECT/N.T1 was 7:1 and N.T2/N.T1 was 2:1. The Whole Body Static (WBS) imaging of the ERB confirmed the suitability of the 99mTc-NFN as radiotracer. The superlative radiochemical succumb, significant in vitro stability in saline and serum, in vitro binding with E. coli, ideal biodistribution and scintigraphic accuracy confirmed the viability of the 99mTc-NFN as radiotracer for infection.  相似文献   

12.
Shen D  Kang Q  Wang YE  Hu Q  Du J 《Talanta》2008,76(4):803-808
In a traditional quartz crystal microbalance (QCM), an AT-cut (cut angle φ = 35.25° in yxl orientation) quartz wafer is employed because it has low frequency–temperature coefficients (dF/dT) at room temperature region. But when a QCM is in contact with a liquid phase, its frequency is also related to the properties of the liquid, which are temperature dependent. The value of dF/dT is about 20 Hz/°C for a 9 MHz AT-cut QCM with one side facing water. In this work, a group of QCMs in new cut angles were prepared. The influence of the cut angle on the frequency–temperature characteristic, response sensitivities to surface mass loading and viscodensity of liquid were investigated. An intrinsically temperature-compensated QCM sensor that possesses low dF/dT values in aqueous solution was reported. When a 9 MHz QCM with φ = 35.65° was contacted with water with one side, its dF/dT value is close to zero at ca. 25 °C and its averaged value of |dF/dT| is only 0.6 Hz/°C in the temperature range of 23–27 °C. The frequency responses to surface mass loading and viscodensity of liquid phase are very close among the QCMs with the cut angles in the range of 35.15–35.7°. The intrinsically temperature-compensated QCM was applied to investigate the alternate adsorption processes of cationic polyelectrolyte and silica nanoparticle.  相似文献   

13.
For small volumes of a NaCl solution (10–6 cm3) with concentrations of 0.1 and 1 M, temperature dependences of the length lof solution columns frozen in thin quartz capillaries (5–10 m in radius) are obtained. At the temperatures t above –4 and –8°C (for 0.1 and 1 M solutions, respectively), the l(t) dependences are reversible, independent of the direction of changes in temperature, and, hence, correspond to the equilibrium conditions of ice/solution system. From the constant mass condition of the solute, an expression for l(t) is derived that includes only one thermodynamic characteristic, namely, the temperature dependence of the solution concentration in equilibrium with ice. Deviations from the calculated l(t) dependences are observed at a temperatures below –2 and –5°C (for 0.1 and 1 M solutions, respectively), which can be explained by the adhesion of frozen solution to the capillary walls. The arising internal stresses lead to the deviations from the thermodynamic equilibrium conditions known for the bulk systems. On approaching the melting zone, the adhesion is failed because of the formation of thin nonfreezing water interlayers on the quartz surface.  相似文献   

14.
Adsorption isotherm of cationic polyelectrolyte, poly(styrene-co-dimethylaminopropylmaleimide), (molecular mass is 2 × 104) on the surface of fused quartz in aqueous 10–4 M KCl solution at pH 3 was measured by the method of capillary electrokinetics. The limiting coverage of adsorption layer corresponds to surface charge 0 = 0.82 C/mol that exceeds the value obtained earlier at pH 6.5. However, if one takes into account the higher charge of a macromolecule at pH 3, the values of packing density of copolymer molecules in completely filled adlayers appeared to be close: 7.88 × 1010 at pH 3 and 7.27 × 1010 cm–2 at pH 6.5. The average binding energy of the molecules and the quartz surface calculated by the Langmuir equation is equal approximately to 21kT and lies between the values of the energy of electrostatic (25.4kT) and hydrophobic (17.7kT) adsorption at pH 6.5 calculated earlier. It can be assumed that, at pH 3, charged units of a macromolecule form ion–dipole bonds with silanol groups, while uncharged groups form hydrophobic bonds with siloxane surface sites.  相似文献   

15.
Radiocomplexation of fleroxacin (FXN) with technetium-99m and its characterization in terms of in vitro stability in saline and serum solutions, in vitro binding with live and heat-killed Escherichia coli, and biodistribution in male Wistar rats (MWR) artificially infected with live and heat-killed E. coli was studied. The 99mTc-FXN complex showed a radiochemical purity (RCP) yield of 98.10 ± 0.24% at 30 min using 125 μg of stannous fluoride, 74 MBq of sodium pertechnetate, and 2 mg of FXN. The complex was found to be more than 90% stable up to 4 h after constitution in normal saline. In serum, the emergence of 16.50% undesirable species was observed within 16 h of incubation at 37 °C. The 99mTc-FXN complex showed saturated in vitro binding with E. coli with a maximum value of 65.00% at 90 min. A fivefold increase in uptake of the complex was noted in the infected when compared with the inflamed and normal muscle of the MWR infected with live E. coli. The stable radiochemical profile in saline and serum, saturated in vitro binding with E. coli and increased uptake in the infected muscle, confirmed the potential of the 99mTc-FXN complex as an E. coli infection imaging agent.  相似文献   

16.
Measurements of advancing contact angles (θ) were carried out for aqueous solutions of cetylpyridinium bromide (CPBr) and propanol mixtures at constant CPBr concentration equal to 1 × 10−5, 1 × 10−4, 6 × 10−4, 1 × 10−3 M, respectively, on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE by aqueous solutions of these mixtures depends on their composition and concentration. In contrast to Zisman, there is no linear dependence between the cos θ and surface tension of aqueous solutions of CPBr and propanol mixtures (γLV), but a linear relationship exists between the adhesion tension and the surface tension of aqueous solutions of CPBr and propanol mixtures which have a slope equal to −1, and between cos θ and the reciprocal of the surface tension of solution. The slope equal to −1 and the intercept on the cos θ axis close to −1 suggest that adsorption of CPBr and propanol mixtures and the orientation of their molecules at aqueous solution–air and PTFE–aqueous solution interfaces are the same. This also suggests that the work of solution adhesion to the PTFE surface does not depend on the concentration of propanol and CPBr. Extrapolation of the straight line to the point corresponding to the surface tension of solution, which completely spreads over the PTFE surface, gives the value of the critical surface tension of PTFE wetting equal to 24.84 mN/m. This value is higher than PTFE surface tension (20.24 mN/m) and the values of the critical surface tension of PTFE wetting determined by other investigators from the contact angle of nonpolar liquids (e.g. n-alkanes). The differences between the value of the critical surface tension obtained here and those which can be found in the literature were discussed on the basis of the simple thermodynamic rules. Using the measured values of the contact angles and Young equation the PTFE–aqueous solution interfacial tension was determined. The values of PTFE–aqueous solution interfacial tension were also calculated from Miller and co-workers equation in which the correction coefficient of nonideality of the surface monolayer was introduced. From comparison of the obtained values it appears that good agreement exists between the values of PTFE–solution interfacial tension calculated on the basis of Young and Miller and co-workers equations in the whole range of propanol concentration.  相似文献   

17.
The effect of magnesium ions on the catalytic activity of alkaline phosphatases from three different sources in the reaction of p-nitrophenyl phosphate hydrolysis was studied. It was found that magnesium in concentrations of 0.6 ng/mL-20 µg/mL significantly activated alkaline phosphatase from chicken intestine; in higher concentrations (0.02–0.2 mg/mL), it weakly activated the enzyme from E. coli and had no effect on the catalytic activity of the enzyme from the small intestine of the Greenland seal. The strongest activating effect was observed in a Tris-HCl buffer solution at pH 9.8. The activating effect of magnesium on alkaline phosphatase from chicken intestine was used as the basis for developing a highly sensitive and selective enzymatic procedure for determining magnesium (0.6–6.0 ng/mL; RSD = 4% at c min; n = 5) by spectrophotometrically monitoring the rate of enzymatic reaction. The developed procedure was applied to the determination of magnesium in urine.__________Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 4, 2005, pp. 425–433.Original Russian Text Copyright © 2005 by Zhavoronkova, Muginova, Shekhovtsova.  相似文献   

18.
An amperometric enzyme electrode based on direct covalent immobilization of tyrosinase on a boron-doped diamond (BDD) electrode has been developed for the detection of phenolic compounds. Combined chemical and electrochemical modifications of the BDD film with 4-nitrobenzenediazonium tetrafluoroborate, an aminophenyl-modified BDD (AP–BDD) surface was produced, and then the tyrosinase was covalently immobilized on the BDD surface via carbodiimide coupling. The response dependences of the enzyme electrode (Tyr–AP–BDD electrode) on pH of solution, applied potential, oxygen level and phenolic compounds diffusion were studied. The Tyr–AP–BDD electrode shows a linear response range of 1–200, 1–200 and 1–250 μM and sensitivity of 232.5, 636.7 and 385.8 mA M−1 cm−2 for phenol, p-cresol and 4-chlorophenol, respectively. 90 percent of the enzyme activity of the Tyr–AP–BDD electrode is retained for 5 weeks storing in 0.1 M PBS (pH 6.5) at 4 °C.  相似文献   

19.
Aurein 2.5 (GLFDIVKKVVGAFGSL-NH2) is an uncharacterised antimicrobial peptide. At an air/water interface, it exhibited strong surface activity (maximal surface pressure 25 mN m−1) and molecular areas consistent with the adoption of α-helical structure orientated either perpendicular (1.72 nm2 molecule−1) or parallel (3.6 nm2 molecule−1) to the interface. Aurein 2.5 was strongly antibacterial, exhibiting a minimum inhibitory concentration (MIC) of 30 μM against Bacillus subtilis and Escherichia coli. The peptide induced maximal surface pressure changes of 9 mN m−1 and 5 mN m−1, respectively, in monolayers mimicking membranes of these organisms whilst compression isotherm analysis of these monolayers showed ΔGMix > 0, indicating destabilisation by Aurein 2.5. These combined data suggested that toxicity of the peptide to these organisms may involve membrane invasion via the use of oblique orientated α-helical structure. The peptide induced strong, comparable maximal surface changes in monolayers of DOPG (7.5 mN m−1) and DOPE monolayers (6 mN m−1) suggesting that the membrane interactions of Aurein 2.5 were driven by amphiphilicity rather than electrostatic interaction. Based on these data, it was suggested that the differing ability of Aurein 2.5 to insert into membranes of B. subtilis and E. coli was probably related to membrane-based factors such as differences in lipid packing characteristics. The peptide was active against both sessile E. coli and Staphylococcus aureus with an MIC of 125 μM. The broad-spectrum antibacterial activity and non-specific modes of membrane action used by Aurein 2.5 suggested use as an anti-biofilm agent such as in the decontamination of medical devices.  相似文献   

20.
The present investigation focuses on the structural properties and reactivity of zirconia-supported vanadium oxide catalysts, prepared by equilibrium adsorption in basic (pH 10) or in acid (pH 2.7) conditions with vanadium content up to 6 wt.% (pH 10) and up to 11.6 wt.% (pH 2.7). The samples, heated at 823 K for 5 h in air, were characterized by X-ray diffraction, Raman spectroscopy and TPR, both as prepared and after leaching with an ammonia solution to remove species not anchored to the zirconia surface. Some representative samples were also tested for the n-butane oxidative dehydrogenation (ODH) reaction. Depending on vanadium content, various vanadium species were identified by Raman spectroscopy that reacted differently on exposure to H2. At similar loading, the fraction of vanadium in a dispersed state and thus interacting with the support was higher in samples prepared at pH 10 than in those at pH 2.7. Samples prepared at pH 2.7 contained a higher fraction of large polymeric structures in addition to ZrV2O7 and V2O5.In line with literature data for propane ODH on similar catalysts, our catalytic results suggested that the active sites for the ODH reaction are associated with the V–O–V bonds of the polymeric exposed structures, whereas the Zr–O–V sites favour alkane combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号