首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukemia and lymphoma cells are much more sensitive to Merocyanine 540 (MC540)-mediated photodynamic therapy (PDT) than normal pluripotent hematopoietic stem cells and normal colony forming unit-granulocyte/macrophage progenitors (CFU-GM). By contrast, most solid tumor cells are only moderately sensitive to MC540-PDT. The limited activity against solid tumor cells has detracted from MC540's appeal as a broad-spectrum purging agent. We report here that noncytotoxic concentrations of amifostine (Ethyol, Ethiofos, WR-2721) and amphotericin B used either alone or in combination potentiate the MC540-sensitized photoinactivation of leukemia cells, wild-type small cell lung cancer cells and cisplatin-resistant small cell lung cancer cells. Amphotericin B also enhances the MC540-sensitized photoinactivation of normal CFU-GM, whereas amifostine protects CFU-GM against the cytotoxic action of MC540-PDT. The yield of CD34-positive normal hematopoietic stem and progenitor cells is only minimally diminished by pretreatment with amifostine, amphotericin B or combinations of amifostine plus amphotericin B. Purging protocols that combine MC540-PDT with amifostine or with amifostine plus amphotericin B could offer a simple and effective approach to the purging of autologous stem cell grafts that are contaminated with solid tumor cells or the purging of stem cell grafts from heavily pretreated leukemia patients that contain reduced numbers of normal stem and progenitor cells and, therefore, can ill afford additional losses caused by purging.  相似文献   

2.
3.
Paediatric solid tumours exhibit steep dose-response curves to alkylating agents and are therefore considered candidates for high-dose chemotherapy and autologous stem cell support. There is growing evidence that autologous stem cell grafts from patients with solid tumours are frequently contaminated with live tumour cells. The objective of this study was to perform, in a preclinical purging model, an initial assessment of the safety and efficacy of a two-step purging procedure that combined Merocyanine 540-mediated photodynamic therapy (MC540-PDT) with a brief exposure to the alkyl-lysophospholipid, Edelfosine. Human and murine bone marrow cells and Neuro-2a murine neuroblastoma, SK-N-SH human neuroblastoma, SK-ES-1 and U-2 OS human osteosarcoma, G-401 and SK-NEP-1 human Wilms' tumour, and A-204 human rhabdomyosarcoma cells were exposed to a fixed dose of MC540-PDT followed by a brief incubation with graded concentrations of Edelfosine. Survival was subsequently assessed by in vitro clonal assay or, in the case of CD34-positive haematopoietic stem cells, by an immunohistochemical method. Combination purging with MC540-PDT and Edelfosine depleted all tumour cells by >4 log while preserving at least 15% of murine granulocyte/macrophage progenitors (CFU-GM), 34% of human CFU-GM, and 31% of human CD34-positive cells. The data suggest that combination purging with MC540-PDT and Edelfosine may be useful for the ex vivo purging of autologous stem cell grafts from patients with paediatric solid tumours.  相似文献   

4.
Abstract— Simultaneous exposure to merocyanine 540 (MC540) and light of a suitable wavelength kills leukemia, lymphoma and neuroblastoma cells but is relatively well tolerated by normal pluripotent hematopoietic stem cells. This differential phototoxic effect has been exploited in preclinical models and a phase I clinical trial for the extracorporeal purging of autologous bone marrow grafts. Salicylate is known to potentiate the MC540-mediated photokilling of tumor cells. Assuming that salicylate induces a change in the plasma membrane of tumor cells (but not normal hematopoietic stem cells) that enhances the binding of dye molecules it has been suggested that salicylate may provide a simple and effective means of improving the therapeutic index of MC540-mediated photodynamic therapy. We report here on a direct test of this hypothesis in a murine model of bone marrow transplantation as well as in clonal cultures of normal murine hematopoietic progenitor cells. In both systems, salicylate enhanced the MC540-sensitized photoinactivation of leukemia cells and normal bone marrow cells to a similar extent and thus failed to improve the therapeutic index of MC540 significantly. On the basis of a series of dye-binding studies, we offer an alternative explanation for the potentiating effect of salicylate. Rather than invoking a salicylate-induced change in the plasma membrane of tumor cells, we propose that salicylate displaces dye molecules from serum albumin, thereby enhancing the concentration of free (active) dye available for binding to tumor as well as normal hematopoietic stem cells.  相似文献   

5.
The purpose of this study was to determine in a preclinical purging model, how effective crystal violet-mediated photodynamic therapy (CV-PDT) is against solid tumor and drug-resistant mutant tumor cells, and if certain limitations of CV-PDT can be overcome by using crystal violet (CV) in combination with the membrane-active photosensitizer, Merocyanine 540 (MC540). When used under conditions that preserved an adequate fraction of normal human granulocyte/macrophage progenitors (CFU-GM), CV-PDT failed to achieve meaningful reductions of DU145 prostate, H69 small cell lung cancer, and MDA-MB-435S breast cancer cells. Melphalan-resistant L1210/L-PAM1, adriamycin-resistant P388/ADR, and adriamycin-resistant HL-60/ADR leukemia cells were markedly less sensitive to CV-PDT than their wild-type counterparts, whereas cisplatin-resistant H69/CDDP cells were more sensitive than wild-type H69 cells. Sequential exposure to MC540- and CV-PDT under conditions that preserved an adequate fraction (73% and 29%, respectively) of normal CD34-positive hematopoietic stem cells and granulocyte/macrophage progenitors was highly effective against H69 (99.997% reduction) and H69/CDDP (99.999% reduction) cells, but ineffective against HL-60/ADR, MDA-MB-435S, and DU145 cells. CV thus shows only limited promise as a single-modality purging agent. However, in certain situations, clinically meaningful tumor cell depletions can be obtained by using CV in combination with a second photosensitizer such as MC540.  相似文献   

6.
The differential sensitivity to merocyanine 540 (MC540)-sensitized photoirradiation of leukemia cells, selected solid tumor cells, and normal pluripotent hematopoietic stem cells has been successfully exploited for the extracorporeal purging of simulated autologous remission bone marrow grafts. In this communication, we compare the effects of fractionated vs continuous irradiation upon the MC540-sensitized photoinactivation of L1210 and K562 leukemia cells. Exposure to MC540 (15 micrograms/mL) and fractionated doses of white light inactivated fewer in vitro clonogenic cells than exposure to an equivalent dose of continuous irradiation, provided the irradiation doses were small (8.1-16.2 kJ/m2) and spaced 1-2 h apart. The dye-sensitized photoinactivation of leukemia cells was enhanced when cells were stored at 4 degrees C instead of 37 degrees C between irradiation periods, most likely in part because the cells were unable to repair sublethal photodynamic damages at the lower temperature. These data suggest that cells can recover from sublethal damage inflicted by the plasma membrane-active photosensitizer, MC540.  相似文献   

7.
MC540-mediated photolysis has several features that make it potentially attractive as a clinical purging procedure. (1) The experience with experimental tumors suggests that MC540-mediated photolysis is effective against a broad range of leukemias and solid tumors, including drug-resistant tumors (Sieber et al., 1984b). Drug-resistant tumor cells are likely to occur in heavily pretreated patients. (2) MC540-mediated photolysis is not cell-cycle dependent (Manna and Sieber, 1985). It kills both resting and cycling cells. In this regard, MC540-mediated photolysis is a valuable complement to cell-cycle specific cytotoxic drugs. (3) There is a large differential in sensitivity between normal pluripotent hematopoietic stem cells and leukemia and neuroblastoma cells. (4) The mechanism of action of MC540-mediated photolysis is different from that of lectins, antibodies and most cytotoxic drugs. MC540 binds to the lipid portion of the plasma membrane and membrane lipids are probably a primary target of the toxic photoproducts. Antibodies and lectins react with proteins and carbohydrates and most drugs have intracellular targets (e.g., nuclear DNA). We would therefore expect little cross-resistance if MC540-mediated photolysis were used in combination with other purging procedures.(5) The small amounts of dye that remain associated with the marrow graft and are infused into the patient are approximately 100,000-fold less than the LD(10) (in mice) and therefore unlikely to cause any harm. The outcome of the first clinical application of the technique supports this view (Sieber et al., 1986c). A better understanding of the underlying molecular mechanisms will undoubtedly lead to more effective applications of the technique and perhaps to the identification of more potent analogs of MC540.  相似文献   

8.
Normal hematopoietic progenitor cells from 129S6/SvEv mice are substantially less sensitive to Merocyanine 540 (MC540)-mediated photodynamic therapy (PDT) than hematopoietic progenitors from sex- and age-matched C57BL/6 mice. When exposed to a combination of MC540 and light commonly used for the extracorporeal purging of hematopoietic stem cells, granulocyte/macrophage progenitors (CFU-GM) from C57BL/6 mice are depleted 7.9-fold whereas CFU-GM from 129S6/SvEv and (C57BL/6 x 129S6/SvEv) F1 mice are depleted 1.4- and 2-fold, respectively. The same rank order of sensitivity is also found with regard to unipotent progenitors of granulocytes and macrophages and with regard to early and late erythroid progenitors. The resistance of hematopoietic progenitors from 129S6/SvEv mice to MC540-PDT appears to be the result of reduced dye binding rather than the result of high levels of intracellular glutathione. These findings have practical implications for the design of preclinical tests of PDT in animal models. They may also provide a useful tool for future investigations into the molecular determinants of sensitivity to MC540-PDT.  相似文献   

9.
ANTIVIRAL ACTIVITY OF MEROCYANINE 540   总被引:1,自引:0,他引:1  
Abstract Simultaneous exposure to the lipophilic dye merocyanine 540 (MC 540) and white light inactivates several enveloped viruses. The same treatment appears to have little or no effect on pluripotent hematopoietic stem cells, mature red cells, and mature leukocytes. At least some components of the clotting system are spared, too. The molecular basis of the virucidal effect of MC 540 and light is not yet completely understood. Based on what is known about the interactions of MC 540 with cells and artificial membranes, it seems likely that MC 540 binds to and damages the viral envelope. MC 540-mediated photosensitization may have implications for the sterilization of bone marrow and blood products, the preparation of vaccines, and selected areas of antiviral therapy.  相似文献   

10.
High-dose chemotherapy combined with autologous transplantation using bone marrow or peripheral blood-derived stem cells (PBSC) is now widely used in the treatment of hematologic malignancies as well as some solid tumors like breast cancer (BC). However, some controversial results were recently obtained in the latter case. The presence of malignant cells in the autograft has been associated with the recurrence of the disease, and purging procedures are needed to eliminate this risk. The aim of this study was to evaluate the potential of the photosensitizer 4,5-dibromorhodamine methyl ester (TH9402), a dibrominated rhodamine derivative, to eradicate multiple myeloma (MM) and BC cell lines, while sparing more than 50% of normal pluripotential blood stem cells from healthy volunteers. The human BC MCF-7 and T-47D and MM RPMI 8226 and NCI-H929 cell lines were used to optimize the photodynamic purging process. Cell concentration and the cell suspension thickness as well as the dye and light doses were varied in order to eventually treat 1-2 L of apheresis. The light source consisted of two fluorescent scanning tubes emitting green light centered about 515 nm. The cellular uptake of TH9402 was measured during the incubation and washout periods and after photodynamic treatment (PDT) using spectrofluorometric analysis. The limiting dilution assay showed that an eradication rate of more than 5 logs is obtained when using a 40 min incubation with 5-10 microM dye followed by a 90 min washout period and a light dose of 5-10 J/cm2 (2.8 mW/cm2) in all cell lines. Agitating the 2 cm thick cell suspension containing 20 x 10(6) cells/mL during PDT was essential for maximal photoinactivation. Experiments on mobilized PBSC obtained from healthy volunteers showed that even more drastic purging conditions than those found optimal for maximal eradication of the malignant cell lines were compatible with a good recovery of hematopoietic progenitors cells. The absence of significant toxicity towards normal hematopoietic stem cells, combined with the 5 logs eradication of cancer cell lines induced by this procedure suggests that TH9402 offers an excellent potential as an ex vivo photodynamic purging agent for autologous transplantation in MM and BC treatment.  相似文献   

11.
Illumination of erythrocytes in the presence of merocyanine 540 (MC540) resulted in changed binding characteristics of MC540, i.e. a red shift in the emission maximum of bound dye with an increase in the relative fluorescence quantum yield. Aluminum phthalocyanine tetrasulfonate-mediated photodynamic treatment, before addition of MC540, resulted in a comparable change in the MC540-binding characteristics with, in addition, an increase in the concentration of MC540 in the membrane. Both photodynamic treatments induce depolarization of the red cell membrane, with a dose dependency comparable to that of changed MC540 binding. Also depolarization, induced by incubation of the cells with A23187 in the presence of Ca2+ in high [K+] buffer, resulted in similar changes in the MC540 binding characteristics. These results indicate a relation between photodynamically induced membrane depolarization and changed MC540-binding characteristics. Hyperpolarization induced by incubation with A23187 in low [K+] buffer resulted in decreased binding of MC540. In accordance, the MC540-mediated photodamage to red cells decreased upon hyperpolarization of the cells. The results indicate that the binding of MC540 to erythrocytes is strongly dependent on the membrane potential and that hyperpolarization of the membrane could be a possible protection mechanism for erythrocytes against MC540-mediated photodynamic damage.  相似文献   

12.
Merocyanine 540 (MC540) was activated by exposure to 514 nm laser light. The light-exposed MC540 was then mixed (in the dark) with tumor cells and normal cells to determine the antiproliferative activity. Treatment with light-exposed MC540 resulted in 70-90% tumor cell kill from different cell lines, while 85% of the normal human mononuclear cells and 41% of the granulocyte-macrophage colony forming cells (CFU-GM) survived the treatment. The observed cytotoxicity of light-exposed MC540 to the tumor cells was significantly greater (P less than 0.05) than the native MC540. Results show that tumor cell specificity and cytotoxicity in the light activated dye are retained for at least 30 days. Addition of catalase and mannitol decreased the cell kill by light-exposed compound, indicating that the observed effects may be due to reactive oxygen species. The electron micrographs of treated cells show a progression towards apoptosis in a majority of the cells. The life span of L1210 leukemia-bearing mice treated with light-exposed MC540 was prolonged compared to the untreated and native MC540 treated mice. High pressure liquid chromatography (HPLC) analysis of light-exposed material shows a completely different elution profile compared to the native compound. Results presented here show that light-exposed photoactive compounds can be used without further illumination and may have significant clinical applications. Photoactive mechanisms dependent on events other than short-lived transient elevations in energy or singlet oxygen must be invoked to explain the reported cytotoxicity.  相似文献   

13.
The merocyanine 540 (MC540)-mediated reduction of nitroxide spin labels in a liposomal system was examined using electron spin resonance (ESR) spectroscopy. Spin label reduction was light driven, and occurred in liposomes composed of both fully-saturated (dimyristoyl) and mono-unsaturated (1-palmitoyl-2-oleoyl) phosphatidylcholine. Loss of the nitroxide ESR signal was enhanced by the physiological electron donors glutathione, cysteine, and NADPH; and was strongly inhibited by the presence of molecular oxygen. Nitroxides reduced in the presence of MC540 alone could be regenerated either by purging the sample with air or by the addition of ferricyanide, indicating that the ESR signal loss was due to reduction to the corresponding hydroxylamines. Only partial regeneration was attained for nitroxides reduced in the presence of glutathione, cysteine, or NADPH. Reduction rates for the lipophilic spin labels, 5-, 12-, and 16-doxyl stearic acid, were not influenced by the position of the nitroxide moiety along the alkyl chain, however reduction of spin labels occupying primarily the aqueous phase was much slower. These studies demonstrate that MC540 can initiate oxidation/reduction (Type I) reactions. Such Type I processes may augment the effects of singlet oxygen in MC540-mediated photodynamic therapy.  相似文献   

14.
Merocyanine 540 (MC540)-mediated photodynamic damage to erythrocytes was strongly reduced when illumination was performed at pH 8.5 as compared to pH 7.4. This could be explained by high pH-mediated hyperpolarization of the erythrocyte membrane, resulting in decreased MC540 binding at pH 8.5. In accordance, the MC540-mediated photooxidation of open ghosts was not inhibited at pH 8.5. Photoinactivation of vesicular stomatitis virus (VSV) was not inhibited at pH 8.5. This suggests that illumination at increased pH could be an approach to protect red blood cells selectively against MC540-mediated virucidal phototreatment. With tetrasulfonated aluminum phthalocyanine (AIPcS4) as photosensitizer, damage to erythrocytes, open ghosts and VSV was decreased when illuminated at pH 8.5. A decreased singlet oxygen yield at high pH could be excluded. The AIPcS4-mediated photooxidation of fixed erythrocytes was strongly dependent on the cation concentration in the buffer, indicating that the surface potential may affect the efficacy of this photosensitizer. This study showed that altering the environment of the target could increase both the efficacy and the specificity of a photodynamic treatment.  相似文献   

15.
Subcellular localization of photosensitizers is thought to play a critical role in determining the mode of cell death after photodynamic treatment (PDT) of leukemia cells. Using confocal laser scanning microscopy and fluorescent organelle probes, we examined the subcellular localization of merocyanine 540 (MC540) in the murine myeloid leukemia M1 and WEHI 3B (JCS) cells. Two patterns of localization were observed: in JCS cells, MC540 was found to localize on the plasma membrane and mitochondria; and in M1 leukemia cells, MC540 was found to localize on lysosomes. The relationship between subcellular localization of MC540 and PDT-induced apoptosis was investigated. Apoptotic cell death, as judged by the formation of apoptotic nuclei, was observed 4 h after irradiation in both leukemia cell lines. Typical ladders of apoptotic DNA fragments were also detected by DNA gel electrophoresis in PDT-treated JCS and M1 cells. At the irradiation dose of 46 kJ/m2 (LD90 for JCS and LD86 for M1 cells), the percentage of apoptotic JCS and M1 cells was 78 and 38%, respectively. This study provided substantial evidence that MC540 localized differentially in the mitochondria, and the subsequent photodamage of the organelle played an important role in PDT-mediated apoptosis in myeloid leukemia cells.  相似文献   

16.
Cancer stem cells (CSC) constitute a cell subpopulation in solid tumors that is responsible for resistance to conventional chemotherapy, metastasis and cancer relapse. The natural product Salinomycin can selectively target this cell niche by directly interacting with lysosomal iron, taking advantage of upregulated iron homeostasis in CSC. Here, inhibitors of the divalent metal transporter 1 (DMT1) have been identified that selectively target CSC by blocking lysosomal iron translocation. This leads to lysosomal iron accumulation, production of reactive oxygen species and cell death with features of ferroptosis. DMT1 inhibitors selectively target CSC in primary cancer cells and circulating tumor cells, demonstrating the physiological relevance of this strategy. Taken together, this opens up opportunities to tackle unmet needs in anti-cancer therapy.  相似文献   

17.
Breast tumors were the first tumors of epithelial origin shown to follow the cancer stem cell model. The model proposes that cancer stem cells are uniquely endowed with tumorigenic capacity and that their aberrant differentiation yields non-tumorigenic progeny, which constitute the bulk of the tumor cell population. Breast cancer stem cells resist therapies and seed metastases; thus, they account for breast cancer recurrence. Hence, targeting these cells is essential to achieve durable breast cancer remissions. We identified compounds including selective antagonists of multiple serotonergic system pathway components required for serotonin biosynthesis, transport, activity via multiple 5-HT receptors (5-HTRs), and catabolism that reduce the viability of breast cancer stem cells of both mouse and human origin using multiple orthologous assays. The molecular targets of the selective antagonists are expressed in breast tumors and breast cancer cell lines, which also produce serotonin, implying that it plays a required functional role in these cells. The selective antagonists act synergistically with chemotherapy to shrink mouse mammary tumors and human breast tumor xenografts primarily by inducing programmed tumor cell death. We hypothesize those serotonergic proteins of diverse activity function by common signaling pathways to maintain cancer stem cell viability. Here, we summarize our recent findings and the relevant literature regarding the role of serotonin in breast cancer.  相似文献   

18.
Autologous bone marrow transplantation is a therapeutic modality that increases the survival rates for children with malignancies with poor prognosis but relapse rates are high and attributed partially to the existence of residual malignant cells. Photodynamic treatment (PDT) has been developed among purging strategies. We investigated the effect of the methanolic extract (ME) and its polar methanolic fraction (PMF) of Hypericum perforatum L., as a new photosensitizer for the leukemic cell line HL-60 and cord blood (CB) hemopoietic progenitors as well as the subcellular localization of the photosensitizer.

Methods

ME and PMF were prepared after extraction of the dry herb with methanol (ME), followed by liquid–liquid extraction with petroleum ether (PMF). Cells were incubated with the extracts before irradiation with Nd-Yvo Laser. Various concentrations of PMF or ME as well as irradiation doses were tested. Following irradiation, cell viability was determined by trypan blue in continuous liquid cultures for HL-60 cells and in clonogenic assays for CB cells. The subcellular localization of the photosensitizer was determined by confocal microscopy.

Results

Laser photoirradiation in the presence of both PMF and ME induces the killing of HL-60 cells. This effect is dose dependent. No CFU-GM and BFU-E growth was observed from CB mononuclear cells under the tested experimental conditions. Confocal microscopy revealed that the extracts localize mainly in the cytoplasm of the cells.

Conclusions

PDT with both PMF and ME induces the killing of HL-60 leukemic cells and the optimal conditions of treatment were determined. This effect of PDT/PMF was also exerted on CB progenitor cells indicative of the non-selective uptake of the photosensitizer by malignant cells. Though this suggests that PDT/PMF cannot be helpful in autologous bone marrow purging, these novel extracts can however be beneficial in the PDT treatment of tumors given their photostability, low toxicity and low cost.  相似文献   


19.
L1210 leukemia cells were synchronized by a double thymidine block technique and then characterized with regard to their susceptibility to merocyanine 540 (MC540)-sensitized photoinactivation. Cells harvested 5 (G2/M phase) h after release from the second thymidine block were most susceptible to MC540-sensitized photoinactivation followed, in order of decreasing sensitivity, by cells harvested 2 (S phase) h and by cells harvested 7 (G1 phase) h after release from the second block. The expression of dye-binding sites changed very little during the cell cycle.  相似文献   

20.
Lung cancer is the leading cause of cancer deaths worldwide and most cancer patients receiving conventional chemotherapy suffer from severe side effects due to the non-selective effects of chemotherapeutic drugs on normal cells. Targeted nanomaterials can obtain excellent accumulation at the tumor site through their active or passive targeting mechanisms, thereby reducing the toxicity of the drugs in various ways. In this study, hyaluronic acid (HA) which could specifically bind to CD44 on the surface of tumor cells, was used to modify amine-caged platinum nanoclusters (Pt NCs-NH2) to obtain targeting HA-Pt NCs-NH2. Based on the differential expression of CD44 on the surface of three lung cells (non-small cell lung cancer cell H1299, small cell lung cancer cell H446, and embryonic lung fibroblast HFL1), HA-Pt NCs-NH2 can differentially enter the three cells and achieve their targeting of non-small cell lung cancer cell (NSCLC) cells. Pt NCs significantly inhibited the proliferation, migration and invasion of NSCLC cells and induced their apoptosis in comparison of classical cisplatin and carboplatin, showing a bright future in early diagnosis and treatment of NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号