首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The macroscopic equations that govern the processes of one- and two-phase flow through heterogeneous porous media are derived by using the method of multiple scales. The resulting equations are mathematically similar to the point equations, with the fundamental difference that the local permeabilities are replaced by effective parameters. The method allows the determination of these parameters from a knowledge of the geometrical structure of the medium and its heterogeneities. The technique is applied to determine the effective parameters for one- and two-phase flows through heterogeneous porous media made up of two homogeneous porous media.  相似文献   

2.
A lattice gas automaton (LGA) model is proposed to simulate fluid flow in heterogeneous porous media. Permeability fields are created by distributing scatterers (solids, grains) within the fluid flow field. These scatterers act as obstacles to flow. The loss in momentum of the fluid is directly related to the permeability of the lattice gas model. It is shown that by varying the probability of occurrence of solid nodes, the permeability of the porous medium can be changed over several orders of magnitude. To simulate fluid flow in heterogeneous permeability fields, isotropic, anisotropic, random, and correlated permeability fields are generated. The lattice gas model developed here is then used to obtain the effective permeability as well as the local fluid flow field. The method presented here can be used to simulate fluid flow in arbitrarily complex heterogeneous porous media.  相似文献   

3.
The analysis of two-phase flow in porous media begins with the Stokes equations and an appropriate set of boundary conditions. Local volume averaging can then be used to produce the well known extension of Darcy's law for two-phase flow. In addition, a method of closure exists that can be used to predict the individual permeability tensors for each phase. For a heterogeneous porous medium, the local volume average closure problem becomes exceedingly complex and an alternate theoretical resolution of the problem is necessary. This is provided by the method of large-scale averaging which is used to average the Darcy-scale equations over a region that is large compared to the length scale of the heterogeneities. In this paper we present the derivation of the large-scale averaged continuity and momentum equations, and we develop a method of closure that can be used to predict the large-scale permeability tensors and the large-scale capillary pressure. The closure problem is limited by the principle of local mechanical equilibrium. This means that the local fluid distribution is determined by capillary pressure-saturation relations and is not constrained by the solution of an evolutionary transport equation. Special attention is given to the fact that both fluids can be trapped in regions where the saturation is equal to the irreducible saturation, in addition to being trapped in regions where the saturation is greater than the irreducible saturation. Theoretical results are given for stratified porous media and a two-dimensional model for a heterogeneous porous medium.  相似文献   

4.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

5.
This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir, is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments.  相似文献   

6.
A mathematically rigorous method of homogenization is presented and used to analyze the equivalent behavior of transient flow of two incompressible fluids through heterogeneous media. Asymptotic expansions and H-convergence lead to the definition of a global or effective model of an equivalent homogeneous reservoir. Numerical computations to obtain the homogenized coefficients of the entire reservoir have been carried out via a finite element method. Numerical experiments involving the simulation of incompressible two-phase flow have been performed for each heterogeneous medium and for the homogenized medium as well as for other averaging methods. The results of the simulations are compared in terms of the transient saturation contours, production curves, and pressure distributions. Results obtained from the simulations with the homogenization method presented show good agreement with the heterogeneous simulations.  相似文献   

7.
Nonlinear fluid flow laws for orthotropic porous media are written in invariant tensor form. As usual in the theory of fluid flow through porous media [1, 2], the equations contain the flow velocity up to the second power. Expressions that determine the nonlinear resistances to fluid flow are presented and it is shown that, on going over from linear to nonlinear flow laws, the asymmetry effect may manifest itself, that is, the fluid flow characteristics may differ along the same straight line in the positive and negative directions. It is shown that, as compared with the linear fluid flow law for orthotropic media when for three symmetry groups a single flow law is sufficient, in nonlinear laws the anisotropy manifestations are much more variable and each symmetry group must be described by specific equations. A system of laboratory measurements for finding the nonlinear flow characteristics for orthotropic porous media is considered.  相似文献   

8.
An analytical three-dimensional solution to the fluid flow problem through heterogeneous porous media in a rotating square channel is presented. The permeability of the fluid saturated porous domain varies in the vertical direction, thus affecting the imposed main flow in the channel. As a result of Coriolis acceleration, secondary circulation in a plane perpendicular to the main flow direction is created. A particular example of a monotonic distribution of the permeability function is analyzed leading to a single vortex secondary circulation. Nevertheless, multiple vortex secondary flow solutions are possible depending on the particular variation of the permeability in the vertical direction. No secondary motion is expected for isothermal flows in homogeneous porous media.  相似文献   

9.
By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blowup phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘ small ‘ solution.  相似文献   

10.
The lattice gas automaton (LGA) model proposed in the previous paper is applied to the problem of simulating dispersion and mixing in heterogeneous porous media. We demonstrate here that tracer breakthrough profiles and longitudinal dispersion coefficients can be computed for heterogeneous porous media.  相似文献   

11.
A numerical solution to the problem of the three‐dimensional fluid flow in a long rotating heterogeneous porous channel is presented. A co‐ordinate transformation technique is employed to obtain accurate solutions over a wide range of porous media Ekman number values and consequent boundary layer thicknesses. Comparisons with an approximate asymptotic solution (for large values of Ekman number) and with theoretical predictions on the validity of Taylor–Proudman theorem in porous media for small values of Ekman number show good qualitative agreement. An evaluation of the boundary layer thickness is presented and a power‐law correlation to Ekman number is shown to well‐represent the results for small values of Ekman number. The different three‐dimensional fluid flow regimes are presented graphically, demonstrating the distinct variation of the flow field over the wide range of Ekman numbers used. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The flow of an adiabatic gas through a porous media is treated analytically for steady one- and two-dimensional flows. The effect on a compressible Darcy flow by inertia and Forchheimer terms is studied. Finally, wave solutions are found which exhibit a cut-off frequency and a phase shift between pressure and velocity of the gas, with the velocity lagging behind the pressure.Nomenclature A area of tube for one-dimensional flow - B drag coefficient associated with Forchheimer term - c speed of sound - M Mach number - p * gas pressure - p dimensionless gas pressure - s coordinate along the axis of tube - t * time variable - t dimensionless time variable - V* gas velocity in the porous media - V dimensionless gas velocity Greek Letters ratio of specific heat capacities - phase angle between gas pressure and velocity for linear waves - parameter indicating the importance of the inertia term - viscosity - p natural frequency of the porous media - * gas density - dimensionless gas density - parameter indicating the importance of the Forchheimer term - porosity of porous media - velocity potential - stream function  相似文献   

13.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

14.
We have extended the Alemán-Slattery model to provide a self-consistent prediction for the residual saturation of the intermediate-wetting phase. Previous experimental studies of three-phase relative permeabilities are critiqued. Only a portion of the data of Oaket al. (J. Petrol. Tech. 42 (1990) 1054) and Oak (SPE/DOE 20183, Society of Petroleum Engineers, 1990) is regarded as suitable for comparison with available models. While the extended Alemán-Slattery model appears to give the best representation of these data, a definitive conclusion is premature.  相似文献   

15.
This paper presents the analytical solutions in Laplace domain for two-dimensionalnonsteady flow of slightly compressible liquid in porous media with double porosity by usingthe methods of integral transforms and variables separation.The effects of the ratio ofstorativities ω,interporosity flow parameter λ,on the pressure behaviors for a verticallyfractured well with infinite conductivity are investigated by using the method of numericalinversion.The new log-log diagnosis graph of the pressures is given and analysed.  相似文献   

16.
In this paper we consider porous media flow without capillary effects. We present a streamline method which includes gravity effects by operator splitting. The flow equations are treated by an IMPES method, where the pressure equation is solved by a (standard) finite element method. The saturation equation is solved by utilizing a front tracking method along streamlines of the pressure field. The effects of gravity are accounted for in a separate correction step. This is the first time streamlines are combined with gravity for three-dimensional (3D) simulations, and the method proves favourable compared to standard splitting methods based on fractional steps. By our splitting we can take advantage of very accurate and efficient 1D methods. The ideas have been implemented and tested in a full field simulator. In that context, both accuracy and CPU efficiency have tested favourably.  相似文献   

17.
Various discretization methods exist for the numerical simulation of multiphase flow in porous media. In this paper, two methods are introduced and analyzed—a full‐upwind Galerkin method which belongs to the classical finite element methods, and a mixed‐hybrid finite element method based on an implicit pressure–explicit saturation (IMPES) approach. Both methods are derived from the governing equations of two‐phase flow. Their discretization concepts are compared in detail. Their efficiency is discussed using several examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Three-phase flow and gravity drainage in porous media   总被引:3,自引:0,他引:3  
We present a theoretical and experimental treatment of three-phase flow in water-wet porous media from the molecular level upwards. Many three-phase systems in polluted soil and oil reservoirs have a positive initial spreading coefficient, which means that oil spontaneously spreads as a layer between water and gas. We compute the thickness and stability of this oil layer and show that appreciable recovery of oil by drainage only occurs when the oil layer occupies crevices or roughness in the pore space. We then analyze the distribution of oil, water and gas in vertical equilibrium for a spreading system, which is governed byα=γ ow (ρ o ?ρ g )/γ go (ρ w ?ρ o ), whereγ ow andγ go are the oil/water and gas/oil interfacial tensions respectively, andρ g ,ρ o andρ w are the gas, oil and water densities respectively. Ifα>1, there is a height above the oil/water contact, beyond which connected oil only exists as a molecular film, with a negligible saturation. This height is independent of the structure of the porous medium. Whenα<1, large quantities of oil remain in the pore space and gravity drainage is not efficient. If the initial spreading coefficient is negative, oil can be trapped and the recovery is also poor. We performed gravity drainage experiments in sand columns and capillary tubes which confirmed our predictions.  相似文献   

19.
张娜  姚军 《计算力学学报》2017,34(2):226-230
可压缩流体是天然油藏中广泛存在的一种流体,研究其在多孔介质中的渗流规律对于油藏开发具有重要意义。本文采用多尺度混合有限元方法,对可压缩流体渗流问题进行了研究。考虑流体的可压缩性以及介质形变,推导得到了可压缩流体渗流问题的多尺度计算格式。数值计算结果表明,多尺度混合有限元适于求解非均质性和可压缩流问题,具有节省计算量、计算精度高等优势,对于实际大规模油藏模拟具有重要意义。  相似文献   

20.
In this work, we analyze the behavior of the particle phase in the flow of a particle-laden mixture through a porous medium. An attempt is made to model the diffusion and dispersion processes, and to quantify the deviation terms that arise when intrinsic volume averaging is used to derive the flow equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号