首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Abstract— Triplet absorption spectra, triplet extinction coefficient and intersystem crossing for 4',5'-monocycloadducts of 3-carbethoxypsoralen (3-CPs) with thymidine (dThd) and uridine (dUrd) in ethanol have been investigated in order to elucidate whether their triplet state properties could be the limitating step for a further photoreaction of 3-CPs monoadducts with DNA nucleosides. The comparison between the triplet characteristics of 4',5'-monoadducts of 3-CPs and those of 8-methoxypsoralen (8-MOP) shows that the quantum yield is much higher in the case of 3-CPs than for 8-MOP. The monofunctionality of 3-CPs cannot therefore be ascribed to the triplet excited states properties of its monoadducts. It is likely that steric hindrance introduced by the bulky carbethoxy group remains a reasonable explanation.  相似文献   

2.
A series of monodisperse Pt-acetylide polymers that contain the [-CC-(p-C6H4)-CC-(t-Pt(PBu3)2)-]n repeat unit has been prepared for n = 1, 2, 3, 4, 5, and 7. The photophysical properties of the series provide information concerning the relationship between the oligomer length and delocalization in the singlet and triplet excited states of the pi-conjugated electron system. The results imply that the singlet excited state is delocalized over approximately 6 repeat units; however, the triplet state is considerably more localized. The triplet energy is almost invariant with oligomer length, but the phosphorescence spectra and triplet nonradiative decay rates indicate that the electron-vibrational coupling in the triplet state decreases with increasing oligomer length.  相似文献   

3.
4-Chloroaniline and its N,N-dimethyl derivative are photostable in cyclohexane but undergo efficient photoheterolysis in polar media via the triplet state and give the corresponding triplet phenyl cations. CASSCF and UB3LYP calculations show that the 4-aminophenyl triplet cation has a planar geometry and is stabilized by >10 kcal mol(-1) with respect to the slightly bent singlet. The triplet has a mixed carbene-diradical character at the divalent carbon. This species either adds to the starting substrate forming 5-chloro-2,4'-diaminodiphenyls (via an intermediate cyclohexadienyl cation) or is reduced to the aniline (via the aniline radical cation) in a ratio depending on the hydrogen-donating properties of the solvent. Transients attributable to the triplet aminophenyl cation as well as to the ensuing intermediates are detected. Chemical evidence for the generation of the phenyl cation is given by trapping via electrophilic substitution with benzene, mesitylene, and hexamethylbenzene (in the last case the main product is a 6-aryl-3-methylene-1,4-cyclohexadiene). Relative rates of electrophilic attack to benzene and to some alkenes and five-membered heterocycles are measured and span over a factor of 15 or 30 for the two cations. The triplet cation formed under these conditions is trapped by iodide more efficiently than by the best pi nucleophiles. However, in contrast to the singlet cation, it does not form ethers with alcohols, by which it is rather reduced.  相似文献   

4.
Photolysis of 1 in chloroform yielded 2 as the major product and a small quantity of 3. Laser flash photolysis demonstrated that upon irradiation, the first excited triplet state of the ketone (T(1K)) of 1 is formed and decayed to form radical 4, which has a λ(max) at 380 nm (τ = 2 μs). Radical 4 expelled a nitrogen molecule to yield imine radical 5 (λ(max) at 300 nm). Density functional theory (DFT) calculations showed that the transition state barrier for the formation of 5 is approximately 4 kcal/mol. In comparison, photolysis of 1 in argon matrices resulted in triplet nitrene 6, which was further characterized with (15)N and D isotope labeling and DFT calculations. Prolonged irradiation of 6 yields triplet imine nitrene 7.  相似文献   

5.
Telomeres at the ends of human chromosomes contain the repeating sequence 5'-d[(TTAGGG)(n)]-3'. Oxidative damage of guanine in DNAs that contain telomeric and nontelomeric sequence generates 7,8-dihydro-8-oxoguanine (8OG) preferentially in the telomeric segment, because GGG sequences are more reactive in duplex DNA. We have developed a general strategy for probing site-specific oxidation reactivity in diverse biological structures through substitution of minimally modified building blocks that are more reactive than the parent residue, but preserve the parent structure. In this study, 8OG was substituted for guanine at G(8), G(9), G(14), or G(15) in the human telomeric oligonucleotide 5'-d[AGGGTTAG(8)G(9)GTT AG(14)G(15)GTTAGGGTGT]-3'. Replacement of G by 8OG in telomeric DNA can affect the formation of intramolecular G quadruplexes, depending on the position of substitution. When 8OG was incorporated in the 5'-position of a GGG triplet, G quadruplex formation was observed; however, substitution of 8OG in the middle of a GGG triplet produced multiple structures. A clear correspondence between structure and reactivity was observed when oligonucleotides containing 8OG in the 5'-position of a GGG triplet were prepared in the quadruplex or duplex forms and interrogated by mediated electrocatalytic oxidation with Os(bpy)(3)(2+) (bpy = 2,2'-bipyridine). The rate constant for one-electron oxidation of a single 8OG in the 5'-position of a GGG triplet was (6.2 +/- 1.7) x 10(4) M(-1) s(-1) in the G quadruplex form. The rate constant was 2-fold lower for the same telomeric sequence in the duplex form ((3.0 +/- 1.3) x 10(4) M(-1) s(-1)). The position of 8OG in the GGG triplet affects telomerase activity and synthesis of telomeric repeat products. Telomerase activity was decreased significantly when 8OG was substituted in the 5'-position of the GGG triplet, but not when 8OG was substituted in the middle of the triplet. Thus, biological oxidation of G to 8OG in telomeres has the potential to modulate telomerase activity. Further, small molecules that inhibit telomerase by stabilizing telomeric G quadruplexes may not be as effective under oxidative stress.  相似文献   

6.
Ground state absorption, first excited-singlet state, and properties of reactive intermediates of mononitropyrene isomers encountered in the atmospheric aerosol have been studied under different conditions that could mimic the environment. The nitro group can present different orientations relative to the pyrene ring depending on its geometric location and could induce differences in the photochemistry of the isomers. The 2-NO(2)Py isomer has the largest red shift and lowest oscillator strength in the UV-visible band associated with the nitro group. The isomers show very low fluorescence yields (10(-3)-10(-4)). Only 1-NO(2)Py and 4-NO(2)Py have phosphorescence emission (Φ(p) ≈ 10(-4)), indicating that the lowest triplet state decays mainly through effective radiationless channels. Laser photolysis produces a low-lying triplet state (τ(T) = 10(-5)-10(-6) s), a long-lived pyrenoxy radical, and a PyNO(2)H radical in solvents in which the triplet can abstract a hydrogen atom. Similar triplet yields were calculated (0.1-0.6) for the isomers, while significant differences in the relative yield of the long-lived species were determined. Differences in the quenching rate constants of the triplet by water and phenols suggest a strong hydrogen-bond interaction with the nitro group in the C-2 position, which provides for radiationless deactivation routes.  相似文献   

7.
A new multistate local CC2 response method for calculating excitation energies and first-order properties of excited triplet states in extended molecular systems is presented. The Laplace transform technique is employed to partition the left/right local CC2 eigenvalue problems as well as the linear equations determining the Lagrange multipliers needed for the properties. The doubles part in the equations can then be inverted on-the-fly and only effective equations for the singles part must be solved iteratively. The local approximation presented here is adaptive and state-specific. The density-fitting method is utilized to approximate the electron-repulsion integrals. The accuracy of the new method is tested by comparison to canonical reference values for a set of 12 test molecules and 62 excited triplet states. As an illustrative application example, the lowest four triplet states of 3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophene-2-yl)thiophene-2-yl)-2-cyanoacrylic acid, an organic sensitizer for solar-cell applications, are computed in the present work. No triplet charge-transfer states are detected among these states. This situation contrasts with the singlet states of this molecule, where the lowest singlet state has been recently found to correspond to an excited state with a pronounced charge-transfer character having a large transition strength.  相似文献   

8.
Abstract— The triplet-triplet absorption spectrum of the 4'5' psoralen-thymine mono-adduct has been determined in water and methanol using the technique of laser flash photolysis. The extinction coefficient of the triplet was measured by the energy-transfer method with retinol triplet as standard, and used to determine the singlet → triplet intersystem crossing quantum yield for 353 nm excitation. Reaction rate constants for mono-adduct triplet with thymine and tryptophan were measured in water. Long-lived transient absorptions detected after quenching the mono-adduct triplet with thymine and tryptophan are assigned mainly to the corresponding mono-adduct radical anion, whose spectrum was established in separate pulse radiolysis studies of the mono-adduct in aqueous formate.
The significant singlet → triplet quantum yields found for the mono-adduct might be consistent with the involvement of triplet excited mono-adduct in DNA cross-link formation, as also may be the high reactivity obtained for the triplet with thymine. The initial quenching products observed resulted from a charge-transfer reaction.  相似文献   

9.
The syntheses of new three phthalonitriles (1, 2 and 3), together with photophysical and photochemical properties of the resulting peripherally and non-peripherally tetrakis- and octakis 3,4-(methylendioxy)-phenoxy-substituted zinc phthalocyanines (4, 5 and 6) are described for the first time. Complexes 4, 5 and 6 have been synthesized and characterized by elemental analysis, IR, 1H NMR spectroscopy, electronic spectroscopy and mass spectra. Complexes 4, 5 and 6 have good solubility in organic solvents such as CHCl3, DCM, DMSO, DMF, THF and toluene and are mainly not aggregated (except for complex 6 in DMSO) within a wide concentration range. General trends are described for singlet oxygen, photodegradation, fluorescence quantum yields, triplet quantum yields and triplet life times of these complexes in DMSO and toluene. Complex 4 has higher singlet oxygen quantum yields, fluorescence quantum yields, triplet quantum yields and triplet life times than complexes 5 and 6. The effect of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (4, 5 and 6) are also reported.  相似文献   

10.
DFT:B3LYP ab initio molecular dynamics (MD) approach is used to elucidate the properties of the Zundel and Eigen, H5O2+ and H9O4+, proton complexes in the triplet state. The simulation considers the complexes in the gas phase (isolated complexes) and inside the clusters composed of 32, 64, and 128 water molecules, mimicking the behavior of aqueous solutions. MD simulations reveal three distinct periods. For the complex in solutions, the periods are smoothed out. The H5O2+ and H9O4+ complexes in the triplet state undergo structural rearrangements, which eventually result in hydrogen elimination. For the H5O2+, the hydrogen is eliminated from the center of the water cluster, whereas for the H9O4+ it is removed from a near-surface water molecule. The rate of hydrogen elimination decreases with increasing the number of water molecules surrounding the complex.  相似文献   

11.
The electronic and structural characteristics of CrF5, CrF4, RuF5 and RuF4 were studied. Ab initio (SCF-CI) calculations were performed with different structures and spin states for each complex. The favored conformation always corresponds to the highest multiplicity: doublet for CrF5 in D3h, triplet for CrF4 in Td, quadruplet for RuF5 in C4v and quintuplet for RuF4 in D4h symmetry.  相似文献   

12.
The EPR spectrum of triplet 4-oxo-2,3,5,6-tetrafluorocyclohexa-2,5-dienylidene 1 was recorded in solid argon at 15 K. Carbene 1 reacts with acetylene under the conditions of matrix isolation yielding triplet vinylmethylene 4, which was characterized by its IR, UV-vis, and EPR spectrum. Carbene 4 is photolabile and is converted to spiro compound 5 on irradiation with lambda > 515 nm. The reaction of triplet carbene 1 with acetylene to produce triplet carbene 4 is predicted to be exothermic by 55 kcal mol(-1) at the B3LYP/6-31G(d,p) level of theory. The cis isomer is calculated to be only 0.4 kcal mol(-1) less stable than trans-4 at this level of theory. According to our calculations, singlet carbene S-4 is not a minimum on the C(8)F(4)H(2)O potential energy surface; however, at the T-4 geometry, the lowest lying singlet state is predicted to be 20.7 kcal mol(-1) higher in energy. The subsequent photochemical cyclization of T-4 yielding spiro compound 5 is exothermic by 10.3 kcal mol(-1) relative to T-4 and by 31.1 kcal mol(-1) relative to S-4. 4-Ethinyl-2,3,5,6-tetrafluorocyclohexa-2,5-dienone 9, the C-H insertion product of 1 and acetylene, was not observed experimentally, although it is favored energetically by 4.3 kcal mol(-1) over 5.  相似文献   

13.
Abstract The BF(3)-catalyzed photodimerization of parent coumarin (1), three 6-alkylcoumarins (2-4) and N-methyl-2-quinolone (5) in dichloromethane was studied by time-resolved UV-vis spectroscopy. The lowest triplet state properties in the absence and presence of BF(3) were outlined, in particular the effect of self-quenching which initiates dimerization. The quantum yield of intersystem crossing (Phi(isc)) of 1-4 increases with BF(3) concentration, approaching Phi(isc) = 0.3. Phi(isc) and the relative quantum yield of dimerization go along, thereby favoring an overall triplet mechanism in both the direct and BF(3)-catalyzed photodimerization. The product ratio of 5 changes strongly with the BF(3) concentration from 100%anti-hh for the free quinolone to 100%syn-ht for the 1:1 complex.  相似文献   

14.
To determine structure-optical property relationships in asymmetric platinum acetylide complexes, we synthesized the compounds trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-2), trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-3) and trans-Pt(PBu3)2(C[triple bond]C-C6H4-C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE2-3) that have different ligands on either side of the platinum and compared their spectroscopic properties to the symmetrical compounds PE1, PE2 and PE3. We measured ground state absorption, fluorescence, phosphorescence and triplet state absorption spectra and performed density functional theory (DFT) calculations of frontier orbitals, lowest lying singlet states, triplet state geometries and energies. The absorption and emission spectra give evidence the singlet exciton is delocalized across the central platinum atom. The phosphorescence from the asymmetric complexes comes from the largest ligand. Time-dependent (TD) DFT calculations show the S1 state has mostly highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) character, with the LUMO delocalized over the chromophore. In the asymmetric chromophores, the LUMO resides on the larger ligand, suggesting the S1 state has interligand charge transfer character. The triplet state geometries obtained from the DFT calculations show distortion on the lowest energy ligand, whereas the other ligand has the ground state geometry. The calculated trend in the triplet state energies agrees very well with the experimental trend. Calculations of triplet state spin density also show the triplet exciton is confined to one ligand. In the asymmetric complexes the spin density is confined to the largest ligand. The results show Kasha's rule applies to these complexes, where the triplet exciton moves to the lowest energy ligand.  相似文献   

15.
2-(4-Benzoylphenyl)-2-phenyl propane ( 4 ) was prepared by benzoylation of 2,2-diphenylpropane ( 2 ). Acylation of ( 4 ) with 3-chloropropanoic chloride gave 2-(4-benzoylphenyl)-2-(4-propenoylphenyl)propane ( 5 ). A monomer 2-(4-benzoylphenyl)-2-(4-propenoylphenyl)propane ( 6 ) was prepared through dehydrochlorination of ( 5 ). The homopolymer of 6 (P6) and the copolymer with styrene ( P6 / S) were prepared by radical polymerization. Laser flash photolysis was employed to determine the absorption and emission spectra of transients, their lifetimes (τ) and the rate constant (kq) of triplet quenching in benzene at laboratory temperature for 4 , P6 , and P6 / S. P6 exhibits a transient absorption maximum in a different spectral region than do the model 4 and copolymer P6/S . The products of kq and τ determined by laser flash photolysis for these transients are higher than th Stern–Volmer constants based on inhibition of degradation. Degradation leading to formation of quenchers is the likely cause of this difference although crosslinking may also contribute. Irradiation of polymers ( P6 and P6/S ) at 366 nm leads to main chain scission with aquantum yield of 0.13 under N2 for P6 and 0.03 for P6/S . In this bichromophoric structural unit, the benzophenone residue absorbs about 80–90% of the incident energy. Its triplet energy is about 5 kJ mol?1 lower than that of the 1-(4-alkylphenyl)-2-propene-1-one chromophore. Different possible pathways of degradation are discussed namely the Norrish Type II reaction of the alkyl aryl ketone and direct reaction of triplet benzophenone with the main chain. In the mechanism favored the benzophenone triplet is proposed to be in equilibrium with the upper acetophenone-like chromophore from which the Norrish Type II reaction leading to chain fragmentation takes place.  相似文献   

16.
As a model for riboflavin, lumiflavin was investigated using density functional theory methods (B3LYP/6-31G* and B3LYP/6-31+G**) with regard to the proposed cascade of intermediates formed after excitation to the triplet state, followed by electron-transfer, proton-transfer, and radical[bond]radical coupling reactions. The excited triplet state of the flavin is predicted to be 42 kcal/mol higher in energy than the singlet ground state, and the pi radical anion lies 45.1 kcal/mol lower in energy than the ground-state flavin and a free electron in the gas phase. The former value compares to a solution-phase triplet energy of 49.8 kcal/mol of riboflavin. For the radical anion, the thermodynamically favored position to accept a proton on the flavin ring system is at N(5). A natural population analysis also provided spin density information for the radicals and insight into the origin of the relative stabilities of the six different calculated hydroflavin radicals. The resulting 5H-LF* radical can then undergo radical[bond]radical coupling reactions, with the most thermodynamically stable adduct being formed at C(4'). Vibrational spectra were also calculated for the transient species. Experimental time-resolved infrared spectroscopic data obtained using riboflavin tetraacetate are in excellent agreement with the calculated spectra for the triplet flavin, the radical anion, and the most stable hydroflavin radical.  相似文献   

17.
Fluorescence detected magnetic resonance (FDMR) has been applied to approximately 25-nm-thick porphyrin films, containing ordered domains of zinc tetra-(p-octylphenyl)-porphyrin (ZnTOPP) spin-coated onto quartz slides. Illuminating the films at 1.4 K with 457.9-nm light from a continuous wave Ar(+) laser produces at least two different, Jahn-Teller-distorted, ZnTOPP triplet species, labeled i and ii. Microwave-induced magnetic resonance of i and ii in the absence or presence of an externally applied magnetic field affects the fluorescence intensity of ZnTOPP, thus allowing FDMR. For triplet species i, formed in films spin-coated from toluene solution, the zero-field splitting (ZFS) parameters were determined as |D| = (316.9 +/- 0.1) x 10(-4) cm(-1) and |E| = (32.0 +/- 0.5) x 10(-4) cm(-1). By exposure of the spin-coated films to chloroform vapor at room temperature, triplet i is converted into species ii, with |D| = (295 +/- 3) x 10(-4) cm(-1) and |E| = (121 +/- 3) x 10(-4) cm(-1). For the excited triplet state of ZnTOPP in a toluene glass, ZFS parameters with values of |D| = (295 +/- 1) x 10(-4) cm(-1) and |E| = (91 +/- 1) x 10(-4) cm(-1) are found. From a combined study of the FDMR- and microwave-induced fluorescence spectra, i and ii are identified as unligated and ligated ZnTOPP triplet species, respectively. From the asymmetrically shaped zero-field FDMR signals of i, we conclude that the local crystal field perturbations of the stacked molecules are anisotropic. The FDMR results of the ZnTOPP films are compared with those for a film of zinc tetraphenylporphyrin (ZnTPP), which lacks the octyl substituents, and therefore is nonordered. Upon illumination, the ZnTPP films contain only a single, ligated, triplet species with ZFS parameters very similar to those of ligated ZnTOPP. At approximately 5 K, the lifetime of triplet i is considerably shortened compared to that of ZnTOPP in a glass at the same temperature.  相似文献   

18.
Abstract—The triplet-triplet absorption spectra of coumarin, 5.7 dimethoxycoumarin and the furocoumarin 4'5' dihydropsoralen. a model for 4'5' psoralen-pyrimidine mono adducts, have been determined by the techniques of pulse radiolysis and laser flash photolysis. The extinction coefficients of the triplet transitions have been measured and used to determine the singlet → triplet intersystem crossing quantum yields for 347 nm excitation in water. Reaction rate constants for coumarin and 4'5' dihydropsoralen triplets with various pyrimidine and purine nucleic acid bases, and amino acids, have been measured. Long-lived transient absorptions detected after quenching coumarin and 4'5' dihydropsoralen triplets with tryptophan are assigned to mixtures of the corresponding coumarin radical anion and the tryptophan radical cation. The spectra of the radical anions of coumarin and 4'5' dihydropsoralen were established using pulse radiolysis of the coumarins in aqueous formate. It is suggested that coumarins and furocoumarin triplets are quenched by nucleic acid bases and amino acids via a chargetransfer mechanism.  相似文献   

19.
To investigate the role of the excited triplet state in the deactivation process of 5-hydroxyflavone (5HF), the photophysical process of 5HF was studied by transient absorption, phosphorescence spectroscopies, and semiempirical calculations. The triplet–triplet absorption (T–T) spectra of 5HF and 5-methoxyflavone (5MF) were observed upon direct and triplet-sensitized excitation. The T–T spectrum of 5HF (λmax=350 nm, τT=2.8 μs) was different from that of 5MF (λmax=360 nm, τT=6.8 μs). Estimations of the triplet energies of 5HF and 5MF by quenching experiments, phosphorescence, and semiempirical (PM3/CI4) calculation revealed that 5HF underwent an intramolecular hydrogen atom transfer and formed the tautomer in the excited triplet state. The triplet energy of the normal form of 5HF was 260 kJ mol−1, while that of the tautomer form (5HF′) was 197 kJ mol−1. The triplet energy of 5MF, the model compound of the normal form of 5HF, was 261 kJ mol−1. The PM3/CI4 calculation supported the experimental observations and suggested that the most stable conformer in the triplet state of 5HF is the tautomer form.  相似文献   

20.
Photolysis (λ > 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N(2) at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm(-1), |E/hc| = 0.0554 cm(-1); |D/hc| = 0.579 cm(-1), |E/hc| = 0.0315 cm(-1)). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon-an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λ(max) = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C(5)H(4)S or C(5)H(4)O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号