首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum yields as high as 120 were achieved for triplet-sensitized photoisomerizations of several Dewar benzene reactants, R, to the corresponding benzene products, P. Considerable chain amplification is maintained even at high conversion. All relevant rate constants of this triplet chain reaction were extracted from laser flash photolysis plus steady-state photolysis experiments. The crucial rate constant ka for adiabatic isomerization of the triplet reactant to triplet product (R* --> P*) cannot be directly measured because it is so large relative to the bimolecular rate of R* formation via sensitization. However, ka was obtained indirectly using a cage/encounter complex model to analyze the competition between the dissociation of encounter pairs with the sensitizer, e.g., S/R* --> S + R*, and the in-cage processes, S/R* --> S/P* --> S*/P, in nonviscous and viscous solvents. These measurements yielded ka values of (approximately 4-9) x 10(9) s(-1), which suggests that only a small (approximately 3 kcal/mol) energy barrier exists along the potential energy surface from R* to P*. Steady-state data indicated that the chain-terminating rate constant R* --> R is negligibly small, an ideal condition for chain amplification. Triplet energy transfer from a series of sensitizers to the Dewar benzene derivatives shows a nonclassical falloff in rate constants with decreasing sensitizer triplet energy, suggesting energy transfer to thermally distorted configurations having lower singlet-triplet energy gaps. As a result of distorted geometries of R* and P*, the chain-propagating energy transfer from P* to R proceeds with a rate constant of only approximately 2 x 10(7) M(-1) s(-1), despite strong exothermicity. The isomerization reaction can release over 100 kcal/kcal of absorbed photons due to the high-energy content of the reactant together with the large chain length.  相似文献   

2.
As a model for riboflavin, lumiflavin was investigated using density functional theory methods (B3LYP/6-31G* and B3LYP/6-31+G**) with regard to the proposed cascade of intermediates formed after excitation to the triplet state, followed by electron-transfer, proton-transfer, and radical[bond]radical coupling reactions. The excited triplet state of the flavin is predicted to be 42 kcal/mol higher in energy than the singlet ground state, and the pi radical anion lies 45.1 kcal/mol lower in energy than the ground-state flavin and a free electron in the gas phase. The former value compares to a solution-phase triplet energy of 49.8 kcal/mol of riboflavin. For the radical anion, the thermodynamically favored position to accept a proton on the flavin ring system is at N(5). A natural population analysis also provided spin density information for the radicals and insight into the origin of the relative stabilities of the six different calculated hydroflavin radicals. The resulting 5H-LF* radical can then undergo radical[bond]radical coupling reactions, with the most thermodynamically stable adduct being formed at C(4'). Vibrational spectra were also calculated for the transient species. Experimental time-resolved infrared spectroscopic data obtained using riboflavin tetraacetate are in excellent agreement with the calculated spectra for the triplet flavin, the radical anion, and the most stable hydroflavin radical.  相似文献   

3.
The photoreactivity of (3-methyl-2H-azirin-2-yl)-phenylmethanone, 1, is wavelength-dependent (Singh et al. J. Am. Chem. Soc. 1972, 94, 1199-1206). Irradiation at short wavelengths yields 2P, whereas longer wavelengths produce 3P. Laser flash photolysis of 1 in acetonitrile using a 355 nm laser forms its triplet ketone (T(1K), broad absorption with λ(max) ~ 390-410 nm, τ ~ 90 ns), which cleaves and yields triplet vinylnitrene 3 (broad absorption with λ(max) ~ 380-400 nm, τ = 2 μs). Calculations (B3LYP/6-31+G(d)) reveal that T(1K) of 1 is located 67 kcal/mol above its ground state (S(0)) and has a long C-N bond (1.58 ?), and the calculated transition state to form 3 is only 1 kcal/mol higher in energy than T(1K) of 1. The calculations show that 3 has significant 1,3-carbon iminyl biradical character, which explains why 3 reacts efficiently with oxygen and decays by intersystem crossing to the singlet surface. Photolysis of 1 in argon matrixes at 14 K produced ketene imine 7, which presumably is formed from 3 intersystem crossing to 7. In comparison, photolysis of 1 in methanol with a 266 nm laser produces mainly ylide 2 (λ(max) ~ 380 nm, τ ~ 6 μs, acetonitrile), which decays to form 2P. Ylide 2 is formed via singlet reactivity of 1, and calculations show that the first singlet excited state of the azirine chromophore (S(1A)) is located 113 kcal/mol above its S(0) and that the singlet excited state of the ketone (S(1K)) is 85 kcal/mol. Furthermore, the transition state for cleaving the C-C bond in 1 to form 2 is located 49 kcal/mol above the S(0) of 1. Thus, we theorize that internal conversion of S(1A) to a vibrationally hot S(0) of 1 forms 2, whereas intersystem crossing from S(1K) to T(1K) results in 3.  相似文献   

4.
Two methylated thienocarbazoles and two of their synthetic nitro-precursors have been examined by absorption, luminescence, laser flash photolysis and photoacoustic techniques. Their spectroscopic and photophysical characterization involves fluorescence spectra, fluorescence quantum yields and lifetimes, and phosphorescence spectra and phosphorescence lifetimes for all the compounds. Triplet-singlet difference absorption spectra, triplet molar absorption coefficients, triplet lifetimes, intersystem crossing S1 --> T1 and singlet molecular oxygen yields were obtained for the thienocarbazoles. In the case of the thienocarbazoles it was found that the lowest-lying singlet and triplet excited states, S1 and T1, are of pi,pi* origin, whereas for their precursors S1 is n,pi*, and T1 is pi,pi*. In both thienocarbazoles it appears that the thianaphthene ring dictates the S1 --> T1 yield, albeit there is less predominance of that ring in the triplet state of the linear thienocarbazole, which leads to a decrease in the observed phiT value.  相似文献   

5.
The relevant excited states involved in the photolysis of methylcobalamin (MeCbl) have been examined by means of time-dependent density functional theory (TD-DFT). The low-lying singlet and triplet excited states have been calculated along the Co-C bond at the TD-DFT/BP86/6-31g(d) level of theory in order to investigate the dissociation process of MeCbl. These calculations have shown that the photodissociation is mediated by the repulsive 3(sigmaCo-C --> sigma*Co-C) triplet state. The key metastable photoproduct involved in Co-C bond photolysis was identified as an S1 state having predominantly dCo --> pi*corrin metal-ligand charge transfer (MLCT) character.  相似文献   

6.
Linear and angular furocoumarins with conjugated external carbonyl substituents show higher triplet and singlet oxygen yields than the corresponding unsubstituted molecules. The efficiency of the oxygen quenching process to yield singlet oxygen is also higher for these substituted molecules. These changes are interpreted in terms of the "proximity effect" associated with two nearly degenerate n pi* and pi pi* excited states, and variations in the excess energy following furocoumarin triplet quenching by ground state triplet oxygen to yield singlet oxygen.  相似文献   

7.
The reaction pathway for the photochemical formation of thymine-thymine (6-4) dimers in DNA is explored using hybrid density functional theory techniques in gas and in bulk solvent. It is concluded that the photo-induced cycloaddition displays favorable energy barriers in the triplet excited state. The stepwise cycloaddition in the triplet excited state involves the initial formation of a diradical followed by ring closure via singlet-triplet interaction. The key geometric features and electron spin densities are also discussed. The difference in barriers of H3' transfer for the lowest-lying triplet and singlet states shows that the singlet oxetane intermediate could catch the second photon to accelerate the rate of proton transfer, leading to formation of the Dewar structure. The present results provide a rationale for the formation of thymine-thymine (6-4) dimers in the triplet excited states.  相似文献   

8.
Extensive MNDO SCF MO calculations were made to determine the heats of formation of the ground state of geometry-optimized perfluorodiazabenzenes (pyridazine, pyrimidine, and pyrazine) and some of their structural isomers (Dewar benzene, benzvalene, prismane, fulvene, and hexadienyne). The heats of formation of the cation, singlet, and triplet states, were derived for the ground-state geometry of 1,3-diaza isomers to gain some insight into the excited state manifolds. These results were used to interpret various experimental observations that relate to the plasma polymerization of the diazines. In particular, the interconversion of the parent heteroaromatic, the relative energies of interconversion and polymerization, and the possibility of the elimination of a small stable molecule were considered. Comparison is made with results reported for the tetrafluorobenzenes.  相似文献   

9.
The irradiation of acyloximes was studied by theoretical methods. CASPT2/6-31G*//CASSCF/6-31G* calculations, using an active space of 14 electrons in 11 orbitals, indicate that S2 should be the spectroscopic state, and its relaxation leads directly to N-O bond breakage due to coupling between the imine pi* and the sigma* N-O orbitals. Subsequent calculations at the B3PW91/6-31+G* level suggest that the resulting iminyl radicals are able to cyclize to the five- or six-membered ring, depending on the presence of a phenyl group as a spacer, a process that has been verified experimentally. The photochemical aspects of the more common five-membered ring formation, such as excited-state quenching, quantum yield, excited-state sensitizers, laser flash photolysis experiments, Stern-Volmer plot, and luminescence measurements, were investigated. These studies indicate that singlet and triplet excited states undergo the same reaction. Emission lifetimes of ca. tau = 10.6 micros for compound 11 are suggestive of triplet parentage, while no fluorescence was detected, in agreement with the computed MEP energy profile.  相似文献   

10.
Ab initio electronic structure calculations are reported for S4. Geometric and energetic parameters are calculated using the singles and doubles coupled-cluster method, including a perturbutional correction for connected triple excitation, CCSD(T), together with systematic sequences of correlation consistent basis sets extrapolated to the complete basis set limit. The geometry for the ground state singlet C2v structure of S4 is in good agreement with the microwave structure determined for S4. There is a low-lying D2h transition state at 1.6 kcal/mol which interchanges the long S-S bond. S4 has a low-lying triplet state (3B 1u) in D2h symmetry which is 10.8 kcal/mol above the C2v singlet ground state. The S-S bond dissociation energy for S4 into two S2(3Sigma*g) molecules is predicted to be 22.8 kcal mol(-1). The S-S bond energy to form S3+S(3P) is predicted to be 64 kcal/mol.  相似文献   

11.
Excitation-energy dependence of fluorescence intensity and fluorescence lifetime has been measured for 4-dimethylaminobenzonitrile (DMABN), 4-aminobenzonitrile (ABN), 4-diisopropylaminobenzonitrile (DIABN), and 1-naphthonitrile (NN) in a supersonic free jet. In all cases, the fluorescence yield decreases rather dramatically, whereas the fluorescence lifetime decreases only moderately for S1 (pi pi*, L(b)) excess vibrational energy exceeding about 1000 cm(-1). This is confirmed by comparison of the normalized fluorescence excitation spectrum with the absorption spectrum of the compound in the vapor phase. The result indicates that the strong decrease in the relative fluorescence yield at higher energies is due mostly to a decrease in the radiative decay rate of the emitting state. Comparison of the experimental results with the TDDFT potential energy curves for excited states strongly suggests that the decrease in the radiative decay rate of the aminobenzonitriles at higher energies is due to the crossing of the pi pi* singlet state by the lower-lying pi sigma*(C[triple bond]N) singlet state of very small radiative decay rate. The threshold energy for the fluorescence "break-off" is in good agreement with the computed energy barrier for the pi pi*/pi sigma* crossing. For NN, on the other hand, the observed decrease is in fluorescence yield at higher excitation energies can best be attributed to the crossing of the pi pi* singlet state by the pi sigma* triplet state.  相似文献   

12.
UB3LYP/6-31G* calculations find that alpha-dicarbonyl-annelated cyclopentadienyl radical 1 has a sigma ground state, which is formed by excitation of an electron from the in-phase combination of carbonyl lone-pair orbitals into the singly occupied pi orbital. Similarly, tetrakis-annelated cyclooctatetraene 3 is calculated to have very-low-lying singlet and triplet excited states, which result from excitations of electrons from the b1g combination of lone pair orbitals into the empty pi nonbonding MO of the COT ring.  相似文献   

13.
The problem of the double bond flipping interconversion of the two equivalent ground state structures of cyclobutadiene (CBD) is addressed at the multireference average-quadratic coupled cluster level of theory, which is capable of optimizing the structural parameters of the ground, transition, and excited states on an equal footing. The barrier height involving both the electronic and zero-point vibrational energy contributions is 6.3 kcal mol(-1), which is higher than the best earlier theoretical estimate of 4.0 kcal mol(-1). This result is confirmed by including into the reference space the orbitals of the CC sigma bonds beyond the standard pi orbital space. It places the present value into the middle of the range of the measured data (1.6-10 kcal mol(-1)). An adiabatic singlet-triplet energy gap of 7.4 kcal mol(-1) between the transition state (1)B(tg) and the first triplet (3)A(2g) state is obtained. A low barrier height for the CBD automerization and a small DeltaE((3)A(2g),(1)B(1g)) gap bear some relevance on the highly pronounced reactivity of CBD, which is briefly discussed.  相似文献   

14.
Photochemical profiles of omega-cleavage of carbon-X (X = Br and Cl) bonds in m-bromo- and m-chloromethylbenzophenones (m-BMBP and m-CMBP) were investigated by laser photolysis techniques and DFT calculations. m-BMBP and m-CMBP were found to undergo omega-bond cleavage to yield the m-benzoylbenzyl radical (m-BBR) at 295 K, and the quantum yields were determined. No CIDEP signal was detected upon 308 nm laser photolysis of both the compounds. From these observations, it was inferred that the omega-bond of these m-halomethylbenzophenones (m-HMBP) cleaves in the lowest excited singlet state (S(1)(n,pi(*))) upon direct excitation. Upon triplet sensitization of acetone (Ac), the m-BBR formation was observed in transient absorption for an Ac-m-BMBP system, and an efficiency of the C-Br bond cleavage in the lowest triplet state (T(1)(n,pi(*))) of m-BMBP was determined. In contrast, formation of triplet m-CMBP was seen for an Ac-m-CMBP system. Absence of C-Cl bond cleavage in the triplet state of m-CMBP indicated the reactive state of m-CMBP for omega-cleavage is only the S(1)(n,pi(*)) state. Based on the efficiencies and DFT calculations for excited state energies, photoinduced omega-bond dissociation of m- and p-HMBPs was characterized.  相似文献   

15.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

16.
The quantum yield of triplet formation, phi T, and that of the photosensitized formation of singlet molecular oxygen, phi delta, were determined for a rare nucleoside, 4-thiouridine (4t-Urd), in water and in acetonitrile, using singlet molecular oxygen phosphorescence, laser-induced optoacoustics and time-resolved thermal lensing. These yields, phi T and phi delta, the latter in aerated solutions, were found to be, respectively, in water: 0.67 +/- 0.17 and 0.18 +/- 0.04 and in acetonitrile: 0.61 +/- 0.15 and 0.50 +/- 0.20. The fraction of the 4t-Urd triplet molecules quenched by oxygen leading to singlet molecular oxygen, S delta, was calculated to be between 0.7 and unity in both solvents, this value being indicative of a pi pi*character for the lowest triplet state of 4t-Urd.  相似文献   

17.
The electronic absorption spectrum of anthracene-9,10-endoperoxide (APO) has been investigated by means of multiconfigurational multi-state second order perturbation theory on complete active space self-consistent field wavefunctions (MS-CASPT2/CASSCF) and two single reference methods: time-dependent density functional theory (TD-DFT) and coupled cluster of second order (CC2). After testing several active spaces and basis sets, a CAS (14,12) active space together with an ANO-S basis set was found an appropriate choice to describe the vertical singlet and triplet electronic states of APO. Unfortunately, TD-DFT and CC2 methods cannot reproduce the MS-CASPT2 and experimental spectrum. Our MS-CASPT2//CASSCF(14,12)/ANO-S calculations predict a predominant pi*(OO)sigma*(OO) character for the lowest singlet excited state S(1) at 3.85 eV. Accordingly, the lowest singlet state of APO should be responsible for homolysis of the endoperoxide group. The next two absorbing excited states, experimentally proposed to be responsible for singlet oxygen production and therefore connected to the biological interest of APO, have been computed vertically at 4.34 and 4.59 eV and assigned to pi(CC)pi*(CC) and pi*(OO)pi*(CC) transitions, respectively. The vertical triplet electronic spectrum follows the singlet vertical spectrum ordering. The high density of triplet and singlet excited states of different nature within few eV points to the possibility of intersystem crossings between potential energy surfaces of different multiplicity.  相似文献   

18.
At various levels of theory, singlet and triplet potential energy surfaces (PESs) of Si2CO, which has been studied using matrix isolation infrared spectroscopy, are investigated in detail. A total of 30 isomers and 38 interconversion transition states are obtained at the B3LYP/6‐311G(d) level. At the higher CCSD(T)/6‐311+G(2d)//QCISD/6‐311G(2d)+ZPVE level, the global minimum 11 (0.0 kcal/mol) corresponds to a three‐membered ring singlet O‐cCSiSi (1A′). On the singlet PES, the species 12 (0.2 kcal/mol) is a bent SiCSiO structure with a 1A′ electronic state, followed by a three‐membered ring isomer Si‐cCSiO (1A′) 13 (23.1 kcal/mol) and a linear SiCOSi 14 (1Σ+) (38.6 kcal/mol). The isomers 11, 12, 13 , and 14 possess not only high thermodynamic stabilities, but also high kinetic stabilities. On the triplet PES, two isomers 31 (3B2) (18.8 kcal/mol) and 37 (3A″) (23.3 kcal/mol) also have high thermodynamic and kinetic stabilities. The bonding natures of the relevant species are analyzed. The similarities and differences between C3O, C3S, SiC2O, and SiC2S are discussed. The present results are also expected to be useful for understanding the initial growing step of the CO‐doped Si vaporization processes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

19.
The electronic singlet-singlet and singlet-triplet electronic transitions of the isoalloxazine ring of the flavin core are studied using second-order perturbation theory within the framework of the CASPT2//CASSCF protocol. The main features of the absorption spectrum are computed at 3.09, 4.28, 4.69, 5.00, and 5.37 eV. The lowest singlet (S1) and triplet (T1) excited states are found to be both of pi character with a singlet-triplet splitting of 0.57 eV. On the basis of the analysis of the computed spin-orbit couplings and the potential energy hypersurfaces built for the relevant excited states, the intrinsic mechanism for photoinduced population of T1 is discussed. Upon light absorption, evolution of the lowest singlet excited state along the relaxation pathway leads ultimately to the population of the lowest triplet state, which is mediated by a singlet-triplet crossing with a state of npi* type. Subsequently a radiationless decay toward T1 through a conical intersection takes place. The intersystem crossing mechanism and the internal conversion processes documented here provide a plausible route to access the lowest triplet state, which has a key role in the photochemistry of the flavin core ring and is mainly responsible for the reactivity of the system.  相似文献   

20.
The generation of 2-carbenabicyclo[3.2.1]octa-3,6-diene (1) results in the formation of C(8)H(8) hydrocarbons endo-6-ethynylbicyclo[3.1.0]hex-2-ene (4), semibullvalene (5), and 5-ethynyl-1,3-cyclohexadiene (6), and C(8)H(10) hydrocarbons bicyclo[3.2.1]octa-2,6-diene (7), tricyclo[3.2.1.0(4,6)]oct-2-ene (8), and tetracyclo[3.3.0.0(2,8)0(4,6)]octane (9). Focus is placed on three mechanistic pathways for the formation of the C(8)H(10) hydrocarbon fraction: (a) abstraction of hydrogen by triplet carbene 1T to produce an equilibrating set of monoradicals, (b) interconversion of triplet carbene 1T into tricyclic triplet diradical 19T and tetracyclic triplet diradical 20T, and (c) interconversion of singlet 1S with analogous singlet diradical 19S and 20S. Ab initio calculations at the (U)B3LYP/6-311+G(3df,2p)//(U)B3LYP/6-31G(d,p) and broken spin symmetry UBS B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d,p) levels rule out choices (a) and (b) and are consistent with the singlet diradical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号