首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diffusion in anisotropic porous media   总被引:2,自引:0,他引:2  
An experimental system was constructed in order to measure the two distinct components of the effective diffusivity tensor in transversely isotropic, unconsolidated porous media. Measurements were made for porous media consisting of glass spheres, mica particles, and disks made from mylar sheets. Both the particle geometry and the void fraction of the porous media were determined experimentally, and theoretical calculations for the two components of the effective diffusivity tensor were carried out. The comparison between theory and experiment clearly indicates that the void fraction and particle geometry are insufficient to characterize the process of diffusion in anisotropic porous media. Roman Letters A interfacial area between - and -phases for the macroscopic system, m2 - A e area of entrances and exits of the -phase for the macroscopic system, m2 - A interfacial area contained within the averaging volume, m2 - a characteristic length of a particle, m - b average thickness of a particle, m - c A concentration of species A, moles/m3 - c o reference concentration of species A, moles/m3 - c A intrinsic phase average concentration of species A, moles/m3 - c a c Ac A, spatial deviation concentration of species A, moles/m3 - C c A/c 0, dimensionless concentration of species A - binary molecular diffusion coefficient, m2/s - D eff effective diffusivity tensor, m2/s - D xx component of the effective diffusivity tensor associated with diffusion parallel to the bedding plane, m2/s - D yy component of the effective diffusivity tensor associated with diffusion perpendicular to the bedding plane, m2/s - D eff effective diffusivity for isotropic systems, m2/s - f vector field that maps c A on to c a , m - h depth of the mixing chamber, m  相似文献   

2.
Suddenly started laminar flow in the entrance region of a circular tube, with constant inlet velocity, is investigated analytically by using integral momentum approach. A closed form solution to the integral momentum equation is obtained by the method of characteristics to determine boundary layer thickness, entrance length, velocity profile, and pressure gradient.Nomenclature M(, , ) a function - N(, , ) a function - p pressure - p* p/1/2U 2, dimensionless pressure - Q(, , ) a function - R radius of the tube - r radial distance - Re 2RU/, Reynolds number - t time - U inlet velocity, constant for all time, uniform over the cross section - u velocity in the boundary layer - u* u/U, dimensionless velocity - u 1 velocity in the inviscid core - x axial distance - y distance perpendicular to the axis of the tube - y* y/R, dimensionless distance perpendicular to the axis - boundary layer thickness - * displacement thickness - /R, dimensionless boundary layer thickness - momentum thickness - absolute viscosity of the fluid - /, kinematic viscosity of the fluid - x/(R Re), dimensionless axial distance - density of the fluid - tU/(R Re), dimensionless time - w wall shear stress  相似文献   

3.
In this paper we examine the generalized Buckley-Leverett equations governing threephase immiscible, incompressible flow in a porous medium, in the absence of gravitational and diffusive/dispersive effects. We consider the effect of the relative permeability models on the characteristic speeds in the flow. Using a simple idea from projective geometry, we show that under reasonable assumptions on the relative permeabilities there must be at least one point in the saturation triangle at which the characteristic speeds are equal. In general, there is a small region in the saturation triangle where the characteristic speeds are complex. This is demonstrated with the numerical results at the end of the paper.Symbols and Notation a, b, c, d entries of Jacobian matrix - A, B, C, D coefficients in Taylor expansion of t, v, a - det J determinant of matrix J - dev J deviator of matrix J - J Jacobian matrix - L linear term in Taylor expansion for J near (s v, sa) = (0, 1) - m slope of r + - p pressure - r± eigenvectors of Jacobian matrix - R real line - S intersection of saturation triangle with circle of radius centered at (1, 0) - S intersection of saturation triangle with circle of radius centered at (0, 1) - s l, sv, sa saturations of phases (liquid, vapor, aqua) - tr J trace of matrix J - v l , v v , v a phase flow rates (Darcy velocities) - v T total flow rate - X, Y, Z entries of dev J - smooth closed curve inside saturation triangle - saturation triangle - l, v, a phase density times gravitational acceleration times resevoir dip angle - K total permeability - l, v, a three-phase relative permeabilities - lv>, la liquid phase relative permeabilities from two-phase data - l, v, a mobilities of phases - T total mobility - l Corey mobility - l, v, a phase viscosities - ± eigenvalues of Jacobian matrix - porosity Supported in part by National Science Foundation grant No. DMS-8701348, by Air Force Office of Scientific Research grant No. AFOSR-87-0283, and by Army Research Office grant No. DAAL03-88-K-0080.This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.  相似文献   

4.
On the boundary conditions at the macroscopic level   总被引:2,自引:0,他引:2  
We study the problem of the boundary conditions specified at the boundary of a porous domain in order to solve the macroscopic transfer equations obtained by means of the volume-averaging method. The analysis is limited to the case of conductive transport but the method can be extended to other cases. A numerical study enables us to illustrate the theoretical results in the case of a model porous medium. Roman Letters sf interfacial area of the s-f interface contained within the macroscopic system m2 - A sf interfacial area of the s-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - d s , d f microscopic characteristic length m - g vector that maps to s, m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l REV characteristic length, m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for the f-phase at the f-s interface - n e outwardly directed unit normal vector at the dividing surface - T * macroscopic temperature field obtained by solving the macroscopic equation (3), K - V averaging volume, m3 - V s , V f volume of the considered phase within the averaging volume, m3 - volume of the macroscopic system, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 Greek Letters s , f volume fraction - ratio of thermal conductivities - s , f thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding to T * , K - spatial deviation temperature K - error on the temperature due to the macroscopic boundary conditions, K - spatial average - s , f intrinsic phase average  相似文献   

5.
The pseudoplastic flow of suspensions, alumina or styrene-acrylamide copolymer particles in water or an aqueous solution of glycerin has been studied by the step-shear-rate method. The relation between the shear rate,D, and the shear stress,, in the step-shear-rate measurements, where the state of dispersion was considered to be constant, was expressed as = AD 1/2 +CD. The effective solid volume fraction,ø F, andA were dependent on the shear rate and expressed byø F =aD b andA = D . Combining the above relations, the steady flow curve was expressed by = D 1/2 + + 0 (1 – a D b/0.74)–1.85 D, where 0 is the viscosity of the medium.With an increase in solid volume fraction and a decreases in the absolute value of the-potential, the flow behavior of the suspensions changed from Newtonian ( = = b = 0), slightly pseudoplastic ( = b = 0), pseudoplastic ( = 0) to a Bingham-like behavior.The change in viscosity of the medium had an effect on the change in the effective volume fraction.  相似文献   

6.
An engineering method is proposed for calculating the friction and heat transfer through a boundary layer in which a nonuniform distribution of the velocity, total enthalpy, and static enthalpy is specified across the streamlines at the initial section x0. Such problems arise in the vortical interaction of the boundary layer with the high-entropy layer on slender blunt bodies, with sudden change of the boundary conditions for an already developed boundary layer (temperature jump, surface discontinuity), and in wake flow past a body, etc.Notation x, y longitudinal and transverse coordinates - u,, H, h gas velocity, stream function, total and static enthalpy - p,,, pressure, density, viscosity, Prandtl number - , q friction and thermal flux at the body surface - r(x), (x) body surface shape and boundary layer thickness - V, M freestream velocity and Mach number - u(0)(x0,), H(0)(x0,), h(0)(x0,) parameter distributions at initial section - u(0)(x,), h(0)(x,), h(0)(x,) profiles of quantities in outer flow in absence of friction and heat transfer at the surface of the body The indices v=0, 1 relate to plane and axisymmetric flows - , w, b, relate to quantities at the outer edge of the inner boundary layer, at the body surface in viscid and nonviscous flows, and in the freestream, respectively. The author wishes to thank O. I. Gubanov, V. A. Kaprov, I. N. Murzinov, and A. N, Rumynskii for discussions and assistance in this study.  相似文献   

7.
Zusammenfassung Für die eingefrorene laminare Grenzschichtströmung eines teilweise dissoziierten binären Gemisches entlang einer stark gekühlten ebenen Platte wird eine analytische Näherungslösung angegeben. Danach läßt sich die Wandkonzentration als universelle Funktion der Damköhler-Zahl der Oberflächenreaktion angeben. Für das analytisch darstellbare Konzentrationsprofil stellt die Damköhler-Zahl den Formparameter dar. Die Wärmestromdichte an der Wand bestehend aus einem Wärmeleitungs- und einem Diffusionsanteil wird angegeben und diskutiert. Das Verhältnis beider Anteile läßt sich bei gegebenen Randbedingungen als Funktion der Damköhler-Zahl ausdrücken.
An analytical approximation for the frozen laminar boundary layer flow of a binary mixture
An analytical approximation is derived for the frozen laminar boundary layer flow of a partially dissociated binary mixture along a strongly cooled flat plate. The concentration at the wall is shown to be a universal function of the Damkohler-number for the wall reaction. The Damkohlernumber also serves as a parameter of shape for the concentration profile which is presented in analytical form. The heat transfer at the wall depending on a conduction and a diffusion flux is derived and discussed. The ratio of these fluxes is expressed as a function of the Damkohler-number if the boundary conditions are known.

Formelzeichen A Atom - A2 Molekül - C Konstante in Gl. (20) - c1=1/(2C) Konstante in Gl. (35) - cp spezifische Wärme bei konstantem Druck - D binärer Diffusionskoeffizient - Ec=u 2 /(2hf) Eckert-Zahl - h spezifische Enthalpie - ht=h+u2/2 totale spezifische Enthalpie - h A 0 spezifische Dissoziationsenthalpie - Kw Reaktionsgeschwindigkeitskonstante der heterogenen Wandreaktion - 1= /( ) Champman-Rubesin-Parameter - Le=Pr/Sc Lewis-Zahl - M Molmasse - p statischer Druck - Pr= cpf/ Prandtl-Zahl - qw Wärmestromdichte an der Wand - qcw, qdw Wärmeleitungsbzw. Diffusionsanteil der Wärmestromdichte an der Wand - universelle Gaskonstante - R=/(2Ma) individuelle Gaskonstante der molekularen Komponente - Rex= u x/ Reynolds-Zahl - Sc=/( D) Schmidt-Zahl - T absolute Temperatur - Td=h A 0 /R charakteristische Dissoziationstemperatur - u, v x- und y-Komponenten der Geschwindigkeit - U=u/u normierte x-Komponente der Geschwindigkeit - x, y Koordinaten parallel und senkrecht zur Platte Griechische Symbole - =A/ Dissoziationsgrad - Grenzschichtdicke - 2 Impulsverlustdicke - Damköhler-Zahl der Oberflächenreaktion - =T/T normierte Temperatur - =y/ normierter Wandabstand - Wärmeleitfähigkeit - dynamische Viskosität - , * Ähnlichkeitskoordinaten - Dichte - Schubspannung Indizes A auf ein Atom bezogen - M auf ein Molekül bezogen - f auf den eingefrorenen Zustand bezogen - w auf die Wand bezogen - auf den Außenrand der Grenzschicht bezogen  相似文献   

8.
In this paper we consider the free convection from a horizontal line source of heat which is embedded in an unbounded porous medium saturated with a fluid at rest under gravity. The convective fluid and the porous medium are in local thermal equilibrium.
Eine exakte Lösung der nicht-darcy'schen freien Konvektion von einer horizontalen, linienförmigen Wärmequelle
Zusammenfassung In dem Aufsatz wird die freie Konvektion von einer horizontalen, linienförmigen Wärmequelle untersucht, die in ein unbegrenztes poröses Medium eingebettet ist. Die Poren des porösen Mediums sind mit einem Fluid gefüllt, das unter Schwerkrafteinfluß ruht. Das strömende Fluid und das poröse Medium sind örtlich im thermischen Gleichgewicht.

Nomenclature c p specific heat of convective fluid - F o parameter,=/(vl>g - g acceleration due to gravity - k thermal conductivity of the saturated porous medium - l typical length scale of body - Q heat flux per unit length of a line source - Ra Rayleigh number, =gQl/2cp - Ra x local Rayleigh number, =xg Qx/ a2cp - T temperature - T temperature of ambient fluid - u, x andy components of velocity - x, y coordinates vertically upwards and normal to axis of plume - X, Y non-dimensional coordinates vertically upwards and normal to axis of plume Greek symbols equivalent themal diffusivity - coefficient of thermal expansion - similarity variable - non-dimensional temperature - x permeability of porous medium - viscosity of convective fluid - v kinematic viscosity of convective fluid - density of convective fluid - stream function - non-dimensional stream function - the Forchheimer's coefficient  相似文献   

9.
We consider the parametrized family of equations tt ,u- xx u-au+u 2 2 u=O,x(0,L), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with chaotic dynamics, provided that =2, 3, 4,.... For =1 we prove the existence of infinitely many first integrals pairwise in involution.  相似文献   

10.
We consider the equation a(y)uxx+divy(b(y)yu)+c(y)u=g(y, u) in the cylinder (–l,l)×, being elliptic where b(y)>0 and hyperbolic where b(y)<0. We construct self-adjoint realizations in L2() of the operatorAu= (1/a) divy(byu)+(c/a) in the case ofb changing sign. This leads to the abstract problem uxx+Au=g(u), whereA has a spectrum extending to + as well as to –. For l= it is shown that all sufficiently small solutions lie on an infinite-dimensional center manifold and behave like those of a hyperbolic problem. Anx-independent cross-sectional integral E=E(u, ux) is derived showing that all solutions on the center manifold remain bounded forx ±. For finitel, all small solutionsu are close to a solution on the center manifold such that u(x)-(x) Ce -(1-|x|) for allx, whereC and are independent ofu. Hence, the solutions are dominated by hyperbolic properties, except close to the terminal ends {±1}×, where boundary layers of elliptic type appear.  相似文献   

11.
Übersicht Bei stark abklingenden Funktionen wird die Übertragungsmatrix U() aufgespalten in die Anteilc U 1() e und U 2() e. Der zweite Term spielt am Rand = 0 keinc Rolle. Die unbekannten Anfangswerte sind über die Matrix U 1(0) an die bekannten gebunden und eindeutig bestimmbar.
Summary For strongly decaying solution functions the transfer matrix U() is splitted into the parts U 1() e and U 2() e. The second term does not influence at the boundary = 0. The unknown initial values are related by the matrix U 1(0) to the known values and they can be uniquely determined.
  相似文献   

12.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

13.
A computerized infrared (IR) scanning radiometer is employed to characterize the boundary layer development over a model wing, having a Göttingen 797 cross-section, by measuring the temperature distribution over its heated surface. The Reynolds analogy is used to relate heat transfer measurements to skin friction. The results show that IR thermography is capable of rapidly detecting location and extent of transition and separation regions of the boundary layer over the whole surface of the tested model wing. Thus, the IR technique appears to be a suitable and effective diagnostic tool for aerodynamic research in wind tunnels.List of symbols c airfoil chord - c f local skin friction coefficient = 2/( V 2) - c p specific heat coefficient at constant pressure - h local convective heat transfer coefficient - Nu Nusselt number = h x/ - Nu c Nusselt number based on airfoil chord = h c/ - Pr Prandtl number c p / - Q j wall heat flux due to Joule heating - Q l heat flux loss - Re Reynolds number V x/ - Re c Reynolds number based on airfoil chord = V c/ - St Stanton number = h/c p V - T w wall temperature - T aw adiabatic wall temperature - V velocity of the free stream - x chordwise spatial coordinate - angle of attack - thermal conductivity coefficient - dynamic viscosity coefficient - mass density - wall shear stress  相似文献   

14.
The molecular theory of Doi has been used as a framework to characterize the rheological behavior of polymeric liquid crystals at the low deformation rates for which it was derived, and an appropriate extension for high deformation rates is presented. The essential physics behind the Doi formulation has, however, been retained in its entirety. The resulting four-parameter equation enables prediction of the shearing behavior at low and high deformation rates, of the stress in extensional flows, of the isotropic-anisotropic phase transition and of the molecular orientation. Extensional data over nearly three decades of elongation rate (10–2–101) and shearing data over six decades of shear rate (10–2–104) have been correlated using this analysis. Experimental data are presented for both homogeneous and inhomogeneous shearing stress fields. For the latter, a 20-fold range of capillary tube diameters has been employed and no effects of system geometry or the inhomogeneity of the flow-field are observed. Such an independence of the rheological properties from these effects does not occur for low molecular weight liquid crystals and this is, perhaps, the first time this has been reported for polymeric lyotropic liquid crystals; the physical basis for this major difference is discussed briefly. A Semi-empirical constant in eq. (18), N/m2 - c rod concentration, rods/m3 - c * critical rod concentration at which the isotropic phase becomes unstable, rods/m3 - C interaction potential in the Doi theory defined in eq. (3) - d rod diameter, m - D semi-empirical constant in eq. (19), s–1 - D r lumped rotational diffusivity defined in eq. (4), s–1 - rotational diffusivity of rods in a concentrated (liquid crystalline) system, s–1 - D ro rotational diffusivity of a dilute solution of rods, s–1 - f distribution function defining rod orientation - F tensorial term in the Doi theory defined in eq. (7) (or eq. (19)), s–1 - G tensorial term in the Doi theory defined in eq. (8) - K B Boltzmann constant, 1.38 × 10–23 J/K-molecule - L rod length, m - S scalar order parameter - S tensor order parameter defined in eq. (5) - t time, s - T absolute temperature, K - u unit vector describing the orientation of an individual rod - rate of change ofu due to macroscopic flow, s–1 - v fluid velocity vector, m/s - v velocity gradient tensor defined in eq. (9), s–1 - V mean field (aligning) potential defined in eq. (2) - x coordinate direction, m - Kronecker delta (= 0 if = 1 if = ) - r ratio of viscosity of suspension to that of the solvent at the same shear stress - s solvent viscosity, Pa · s - * viscosity at the critical concentrationc *, Pa · s - v 1, v2 numerical factors in eqs. (3) and (4), respectively - deviatoric stress tensor, N/m2 - volume fraction of rods - 0 constant in eq. (16) - * volume fraction of rods at the critical concentrationc * - average over the distribution functionf(u, t) (= d 2u f(u, t)) - gradient operator - d 2u integral over the surface of the sphere (|u| = 1)  相似文献   

15.
Summary Stress analysis has been carried out for a finite cylinder subjected to arbitrarily distributed axisymmetrical surface loads. Direct stress x in the axial direction is assumed to be of the form x = 0+r 1 +r 2 where 0 to 2 are functions of x. Using the equations of equilibrium and compatibility the other direct stresses and the shearing stress are expressed by 1 and 2. Fundamental equations governing 1 and 2 are introduced using the variational principle of complementary energy. From the results of the present analysis it is evident that the boundary conditions can be satisfied completely even for the case where the external forces are specified in complicated form, and that more accurate solutions can easily be obtained by introducing additional terms in x.
Spannungsanalyse für den Zylinder unter axialsymmetrischer Last in beliebiger Verteilung
Übersicht Für einen endlichen Zylinder unter axialsymmetrischer Oberflächenlast in beliebiger Verteilung werden die Spannungen ermittelt. Die Normalspannung in Axialrichtung wird in der Form x = 0+r 1 +r 2 angesetzt mit 0, 1, 2 als Funktionen von x. Mit Hilfe der Gleichgewichtsund Verträglichkeitsbedingungen werden die anderen Normalspannungen und die Schubspannung durch 1 und 2 ausgedrückt. Über das Variationsprinzip für die Komplementärenergie werden die grundlegenden Gleichungen für 1 und 2 eingeführt. Die Ergebnisse zeigen, daß die Randbedingungen selbst für komplizierte Belastungsarten vollständig erfüllbar sind und mit zusätzlichen Termen in x mühelos noch genauere Lösungen bestimmt werden können.
  相似文献   

16.
The two-dimensional interaction of a single vortex with a thin symmetrical airfoil and its vortex wake has been investigated in a low turbulence wind tunnel having velocity of about 2 m/s in the measuring section. The flow Reynolds number based on the airfoil chord length was 4.5 × 103. The investigation was carried out using a smoke-wire visualization technique with some support of standard hot-wire measurements. The experiment has proved that under certain conditions the vortex-airfoil-wake interaction leads to the formation of new vortices from the part of the wake positioned closely to the vortex. After the formation, the vortices rotate in the direction opposite to that of the incident vortex.List of symbols c test airfoil chord - C vortex generator airfoil chord - TA test airfoil - TE test airfoil trailing edge - TE G vortex generator airfoil trailing edge - t dimensionless time-interval measured from the vortex passage by the test airfoil trailing edge: gDt=(T-T- TEU/c - T time-interval measured from the start of VGA rotation - U free stream velocity - U vortex induced velocity fluctuation - VGA vortex generator airfoil - y distance in which the vortex passes the test airfoil - Z vortex circulation coefficient: Z=/(U · c/2) - vortex generator airfoil inclination angle - vortex circulation - vortex strength: =/2  相似文献   

17.
We study the modelling of purely conductive heat transfer between a porous medium and an external fluid within the framework of the volume averaging method. When the temperature field for such a system is classically determined by coupling the macroscopic heat conduction equation in the porous medium domain to the heat conduction equation in the external fluid domain, it is shown that the phase average temperature cannot be predicted without a generally negligible error due to the fact that the boundary conditions at the interface between the two media are specified at the macroscopic level.Afterwards, it is presented an alternative modelling by means of a single equation involving an effective thermal conductivity which is a function of point inside the interfacial region.The theoretical results are illustrated by means of some numerical simulations for a model porous medium. In particular, temperature fields at the microscopic level are presented.Roman Letters sf interfacial area of thes-f interface contained within the macroscopic system m2 - A sf interfacial area of thes-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - g vector that maps to s , m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l s,l f microscopic characteristic length m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for thef-phase at thef-s interface - n outwardly directed unit normal vector at the dividing surface. - R 0 REV characteristic length, m - T i macroscopic temperature at the interface, K - error on the external fluid temperature due to the macroscopic boundary condition, K - T * macroscopic temperature field obtained by solving the macroscopic Equation (3), K - V averaging volume, m3 - V s,V f volume of the considered phase within the averaging volume, m3. - mp volume of the porous medium domain, m3 - ex volume of the external fluid domain, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 - x, z spatial coordinates Greek Letters s, f volume fraction - ratio of the effective thermal conductivity to the external fluid thermal conductivity - * macroscopic thermal conductivity (single equation model) kcal/m s K - s, f microscopic thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding toT *, K - spatial deviation temperature K - error in the temperature due to the macroscopic boundary conditions, K - * i macroscopic temperature at the interface given by the single equation model, K - spatial average - s , f intrinsic phase average.  相似文献   

18.
    
Heat transfer in the flow of a conducting Fluid between two non-conducting porous disks (—one is rotating and other is stationary) in the presence of a transverse uniform magnetic field and under uniform suction, is studied. Asymptotic solutions are obtained for R«M 2. The rate of Heat flux from the disks and the temperature distribution are investigated. It is observed that the temperature distribution and heat flux increase with the increase of magnetic field.Nomenclature B 0 imposed magnetic field - density of the fluid - velocity vector - p pressure - viscosity of the fluid - kinematic viscosity of the fluid - J r radial component of current density - J azimuthal component of current density - J z axial component of current density - m magnetic permeability - electrical conductivity of the fluid - U suction velocity - E r radial component of electric field - E azimuthal component of electric field - E z axial component of electric field - c p specific heat at constant pressure - angular velocity of the rotating disk - u radial component of velocity - v azimuthal component of velocity - w axial component of velocity - F() dimensionless function defined in (17) - G() dimensionless function defined in (17) - () dimensionless function defined in (18) - () dimensionless function defined in (18) - dimensionless axial distance - R suction Reynolds number, Uh/ - R 1 rotation Reynolds number, h 2/ - M Hartmann number, B 0 h(/)1/2 - P Prandtl number, c p /R - = 2R 1 2 /R 2 - dimensionless quantity - N Perturbation parameter, M 2/R - k Co-efficient of thermal conductivity - s Dimensionless quantity defined in (30) as . - E Dimensionless quantity defined as . - X Dimensionless quantity defined as . - K Constant defined in (22)  相似文献   

19.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

20.
In this paper, a study is made of the damping influence of the wall on turbulent fluid flow. By considering the oscillation of the whole of the boundary, van Driest's original hypothesis has been extended to obtain the wall damping factor in flow in a duct of constant cross section. The damping factor is used in conjunction with mixing length expressions to obtain the velocity field. Particular examples considered are plane parallel flow and axisymmetric flow in a pipe and in an annulus.
Ein Modell für die Mischungslänge von turbulenten Strömungen in Rohren mit konstantem Querschnitt
Zusammenfassung In dieser Arbeit wurde der dämpfende Wandeinfluß in turbulenten Strömungen untersucht. Unter Berücksichtigung der Schwingungen in der gesamten Grenzschicht wurde die ursprüngliche Theorie von van Driest erweitert und ein Dämpfungsfaktor an der Wand in Rohrströmungen mit konstantem Querschnitt ermittelt. Dieser Dämpfungsfaktor diente in Verbindung mit Ausdrücken für die Mischungslänge zur Bestimmung des Geschwindigkeitsfeldes. Ausgewählte Beispiele waren die ebene Parallelströmung sowie die Zylinderströmung in einem Rohr und einem Ringspalt.

Nomenclature A, A*(=Au/v) Parameter defined in text - b, b*(=bu/v) semi-width of parallel plate channel - c(= 1/A) parameter defined in text - E[, /2] complete elliptic integral of the second kind - d damping factor - F, G, H functions - l, l*(=/v) mixing length - MO, O functions - r, r*(=ru/v) radius - A real part of function - R, S, T, U functions - u, u*(=u/u) velocity in flow direction Z - friction velocity - x, y, z co-ordinates (z in flow direction) - y*(=yu/v) non-dimensional wall distance - fluid density - , eff kinematic viscosity, effective kinematic viscosity - phase angle, or polar coordinate angle - shear stress - (=r/rW) radius ratio - angular velocity Suffixes w wall value - far from a wall  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号