首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The reaction of dimeric rhodium precursor [Rh(CO)2Cl]2 with two molar equivalent of 1,1,1-tris(diphenylphosphinomethyl)ethane trichalcogenide ligands, [CH3C(CH2P(X)Ph2)3](L), where X = O(a), S(b) and Se(c) affords the complexes of the type [Rh(CO)2Cl(L)] (1a–1c). The complexes 1a–1c have been characterized by elemental analyses, mass spectrometry, IR and NMR (1H, 31P and 13C) spectroscopy and the ligands a–c are structurally determined by single crystal X-ray diffraction. 1a–1c undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I and C6H5CH2Cl to give Rh(III) complexes of the types [Rh(CO)(COR)ClXL] {R = –CH3 (2a–2c), –C2H5 (3a–3c); X = I and R = –CH2C6H5 (4a–4c); X = Cl}. Kinetic data for the reaction of a–c with CH3I indicate a first-order reaction. The catalytic activity of 1a–1c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 1564–1723) is obtained compared to that of the well-known commercial species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature 130 ± 2 °C, pressure 30 ± 2 bar and time 1 h.  相似文献   

2.
The organophosphonate-substituted alkoxides [Bu4nN]2[{Ti(OMe)3(O3PPh)}2] (1) and [Bu4nN]2[{Nb(OMe)3(O3PPh)}2(μ-O)] (2) have been prepared from [Bu4nN][PhPO3H] and the metal alkoxides Ti(OMe)4 or Nb(OMe)5 respectively. In 1, the bridging phenylphosphonates occupy trans coordination sites, whereas in 2, a cis–bridging geometry is adopted.  相似文献   

3.
Half-titanocene is well-known as an excellent catalyst for the preparation of SPS (syndiotactic polystyrene) when activated with methylaluminoxane (MAO). Dinuclear half-sandwich complexes of titanium bearing a xylene bridge, (TiCl2L)2{(μ-η5, η5-C5H4-ortho-(CH2–C6H4–CH2)C5H4}, (4 (L = Cl), 7 (L = O-2,6-iPr2C6H3)) and (TiCl2L)2{(μ-η5, η5-C5H4-meta-(CH2–C6H4–CH2)C5H4} (5 (L = Cl), 8(L = O-2,6-iPr2C6H3)), have been successfully synthesized and introduced for styrene polymerization. The catalysts were characterized by 1H- and 13C NMR, and elemental analysis. These catalysts were found to be effective in forming SPS in combination with MAO. The activities of the catalysts with rigid ortho- and meta-xylene bridges were higher than those of catalysts with flexible pentamethylene bridges. The catalytic activity of four dinuclear half-titanocenes increased in the order of 4 < 5 < 7 < 8. This result displays that the meta-xylene bridged catalyst is more active than the ortho-xylene bridged and that the aryloxo group at the titanium center is more effective at promoting catalyst activity compared to the chloride group at the titanium center. Temperature and ratio of [Al]:[Ti] had significant effects on catalytic activity. Polymerizations were conducted at three different temperatures (25, 40, and 70 °C) with variation in the [Al]:[Ti] ratio from 2000 to 4000. It was observed that activity of the catalysts increased with increasing temperature, as well as higher [Al]:[Ti]. Different xylene linkage patterns (ortho and meta) were recognized to be a principal factor leading to the characteristics of the dinuclear catalyst due to its different spatial arrangement, causing dissimilar intramolecular interactions between the two active sites.  相似文献   

4.
The synthesis and characterization of a series of cobalt(III) complexes of the general type [Co(N2O2)(L2)]+ are described. The N2O2 Schiff base ligands used are Me-salpn (H2Me-salpn = N,N′-bis(methylsalicylidene)-1,3-propylenediamine) (13) and Me-salbn (H2Me-salbn = N,N′-bis(methylsalicylidene)-1,4-butylenediamine) (45). The two ancillary ligands L include: pyridine (py) 1, 3-metheylpyridine (3-Mepy) 2, 1-methylimidazole (1-MeIm) 3, 4-methylpyridine (4-Mepy) 4 and pyridine (py) 5. These complexes have been characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structures of trans-[CoIII(Me-salpn)(py)2]PF6, 1, and cis-α-[CoIII(Me-salbn)(4-Mepy)2]BPh4 · 4-Mepy, 4, have been determined by X-ray diffraction. Examination of the solution and crystalline structures revealed that the outer coordination sphere of the complexes exerts a noticeable influence on the inner coordination sphere of the Co(III) ion. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to CoIII–CoII is electrochemically irreversible, which is accompanied by the dissociation of the axial (R-py)–cobalt bonds. It has also been observed that the Co(III) state is stabilized with increasing the flexibility of the ligand environment.  相似文献   

5.
Selective formation of (η3-siloxyallyl)tungsten complexes by reaction of hydrido(hydrosilylene)tungsten complexes with α,β-unsaturated carbonyl compounds was reported experimentally. The mechanisms have been investigated by employing the model reaction of [Cp(CO)2(H)WSi(H)–{C(SiH3)3}] (R), derived from the original experimental complex Cp′(CO)2(H)WSi(H)–[C(SiMe3)3] (1a, Cp′ = Cp*; 1b, Cp′ = η5-C5Me4Et), with methyl vinyl ketone, under the aid of the density functional calculations at the b3lyp level of theory. It is theoretically predicted that the route involving migration of the hydride to silicon to afford a 16e intermediate [Cp(CO)2W–SiH2–{C(SiH3)3}] is inaccessible (route 2), supporting the proposition by experiments. Another route, via [2 + 4] cycloaddition followed by directly Si–H reductive elimination, is theoretically predicted to be accessible (route 1). In route 1, two possible paths with different attacking directions of the oxygen of methyl vinyl ketone at Si (WSi) are put forward. The attack at the Si atom from the hydride (H1) side of the plane W–Si–H1 in R is found to be preferred kinetically. The regioselectivity for formation of (η3-siloxyallyl)tungsten complexes, where only the exo-anti isomer was obtained, is discussed based on the consideration of thermodynamics and kinetics.  相似文献   

6.
[C3N2H5]6[Bi4Br18] has been synthesized and characterized by the X-ray (at 293 and 110 K), calorimetric, dilatometric and dielectric measurements. At room temperature it crystallizes in the monoclinic space group, C2/m. A crystal structure consists of disordered imidazolium cations and ordered discrete tetramers of [Bi4Br18]6-. This compound reveals a rich polymorphism in a solid state. It undergoes three solid–solid phase transitions: from phase I to II at 426/423 K (heating–cooling), II→III at 227 K and III→IV at 219.5/219 K. A clear dielectric relaxation process is found in the room temperature phase II. Infrared studies of the polycrystalline [C3N2H5]6[Bi4Br18] showed that the ν(N–H), δ(ring) and δ(C–H) modes of the imidazolium cations appeared to be very sensitive to the IV→III phase transition. 1H NMR measurements confirmed a key role of the imidazolium cations in the phase transitions mechanisms at low temperatures.  相似文献   

7.
Assembly of 5-sulfosalicylic acid (H3L) and d10 transition metal ions (CdII, AgI) with the neutral N-donor ligands produces five new complexes: [Cd2(HL)2(4,4′-bipy)3]n·2nH2O (1), {[Cd2(μ2-HCO2)2(4,4′-bipy)2(H2O)4][Cd(HL)2(4,4′-bipy)(H2O)2]}n (2), {[Cd(4,4′-bipy)(H2O)4][HL]·H2O}n (3), [Cd(HL)(dpp)2(H2O)]n·4nH2O (4), {[Ag(4,4′-bipy)][Hhbs]}n (5) (4,4′-bipy=4,4′-bipyridine, dpp=1,3-di(pyridin-4-yl)propane, H2hbs=4-hydroxybenzenesulfonic acid, the decarboxylation product of H3L). Complex 1 adopts a 5-connected 3D bilayer topology. Complex 2 has the herring-bone and ladder chain, which are extended to a 3D network via hydrogen bonding. In 3–4 complexes, 3 is a 3D supermolecular structure formed by polymeric chains and 2D network of HL2−, while 4 gives the double-stranded chains. In 5, ladder arrays are stacked with the 2D networks of Hhbs anions in an –ABAB– sequence. Complexes 1–4 display green luminescences in solid state at room temperature, while emission spectra of 3 and 4 show obvious blue-shifts at low temperature.  相似文献   

8.
Addition of excess ferrocenylacetylene (FcCCH) to [η5-(C5H5)Ti][μ:η22-C2(SiMe3)2]25-(C5H5)Mg] (1) affords the novel ferrocene–pseudotitanocene complex [η5-1,2,5,6-tetrakis(trimethylsilyl)-4-ferrocenylcyclohexa-1,4-dienyl](η5-cyclopentadienyl)titanium(II), [η5-(Me3Si)4FcC6H2]Ti(η5-C5H5) (2), as the sole isolated titanium-containing product. Its structure was established by EI MS, NMR and UV–vis spectroscopy. The formation of 2 follows the general reaction route of terminal acetylenes with 1.  相似文献   

9.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

10.
Two novel polyoxometalate derivatives, {XIVWVI10WV2O40[Cu(en)2(H2O)]3} [X=V (1), Si (2); en=ethylenediamine], have been hydrothermally synthesized and characterized by elemental analyses, IR, UV–Vis, XPS, EPR, TG and single crystal X-ray diffraction analyses. They represent the first classical Keggin polyoxoanion supported by three transition metal complex moieties, which further act as the neutral molecular unit for the construction of the interesting three-dimensional supramolecular frameworks. The magnetic properties of 1 have also been studied in the temperature range of 4–300 K, and its magnetic susceptibility obeys the Curie–Weiss law, showing antiferromagnetic coupling.  相似文献   

11.
The complex [Rh(CO)2Cl]2 reacts with two molar equivalent of pyridine carboxylic acids ligands Py-2-COOH(a), Py-3-COOH(b) and Py-4-COOH(c) to yield rhodium(I) dicarbonyl chelate complex [Rh(CO)2(L/)](1a) {L/ = η2-(N,O) coordinated Py-2-COO(a/)} and non-chelate complexes [Rh(CO)2ClL//](1b,c) {L// = η1-(N) coordinated Py-3-COOH(b), Py-4-COOH(c)}. The complexes 1 undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to give penta coordinated Rh(III) complexes of the types [Rh(CO)(CORn)XL/], {n = 1,2,3; R1 = CH3(2a); R2 = C2H5(3a); X = I and R3 = CH2C6H5 (4a); X = Cl}, [Rh(CO)I2L/](5a), [Rh(CO)(CORn)ClXL//] {R1 = CH3(6b,c); R2 = C2H5(7b,c); X = I and R3 = CH2C6H5 (8b,c); X = Cl} and [Rh(CO)ClI2L//](9b,c). The complexes have been characterized by elemental analysis, IR and 1H NMR spectroscopy. Kinetic data for the reaction of 1a–b with CH3I indicate a first order reaction. The catalytic activity of 1a–c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 810–1094) is obtained compared with that of the well-known commercial species [Rh(CO)2I2] (TON = 653) at mild reaction conditions (temperature 130 ± 5 °C, pressure 35 ± 5 bar).  相似文献   

12.
Two new copper(II) complexes, viz. [Cu(nelin)(H2O)2]2[Fe(CN)6] · 6H2O (2) and [{Cu(nelin)}2Ni(CN)4](ClO4)2 · 2H2O (3), have been synthesized using [Cu(nelin)](ClO4)2 (1) (nelin = 1,9-diamino-5-methyl-5-nitro-3,7-diazanonane) as a nitroalkyl-substituted CuIIN4 precursor, and their structures and supramolecular networks have been fully explored using the single crystal X-ray diffraction technique. The H-bonded 1D chains of 2 run along the a-axis, being generated from supramolecular synthons using cations and anions, and are further propagated into a 3D array to form irregular honeycomb-like channels which are divided into two halves, with each half accomodating a helical water chain running in opposite directions to each other. In complex 3, the trinuclear units are arranged in successive rows in a herringbone fashion and bifurcated hydrogen bonding through the uncoordinated terminals of the [Ni(CN)4]2− units give rise to a supramolecular (4,4) network. A comparison of the PXRD pattern of complex 2 and its dehydrated form indicate marked changes in the diffraction pattern with the development of a quasi glassy nature in the dehydrated form. The electrochemical properties of 1, 2 and 3 have been investigated in comparative ways using the cyclic voltammetric technique in aqueous and MeCN solutions with Ag/AgCl as a reference electrode. Electrochemical reduction generates the one-electron reduced nitro-radical anion. In water–alcohol glass at 77 K complex 2 exhibits a typical four-line hyperfine EPR spectra with g|| = 2.11, g = 2.02, A|| = 150 Oe and A = 5 Oe at ν = 9.45 MHz.  相似文献   

13.
The mononuclear complexes [(η6-arene)Ru(ata)Cl]PF6 {ata = 2-acetylthiazole azine; arene = C6H6 [(1)PF6]; p-iPrC6H4Me [(2)PF6]; C6Me6 [(3)PF6]}, [(η5-C5Me5)M(ata)]PF6 {M = Rh [(4)PF6]; Ir [(5)PF6]} and [(η5-Cp)Ru(PPh3)2Cl] {η5-Cp = η5-C5H5 [(6)PF6]; η5-C5Me5 (Cp*) [(7)PF6]; η5-C9H7 (indenyl); [(8)PF6]} have been synthesised from the reaction of 2-acetylthiazole azine (ata) and the corresponding dimers [(η6-arene)Ru(μ-Cl)Cl]2, [(η5-C5Me5)M(μ-Cl)Cl]2, and [(η5-Cp)Ru(PPh3)2Cl], respectively. In addition to these complexes a hydrolysed product (9)PF6, was isolated from complex (4)PF6 in the process of crystallization. All these complexes are isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV–Vis spectroscopy. The molecular structures of [2]PF6 and [9]PF6 have been established by single-crystal X-ray structure analyses.  相似文献   

14.
The new dipyridyl ligands N,N′-(methylenedi-p-phenylene)bis(pyridine-4-carboxamide), L1, and N,N′-(methylenedi-p-phenylene)bis(pyridine-3-carboxamide), L2, incorporating amide spacers have been synthesized and reacted with metal salts to give complexes of the types [Cu(L1)2X2] (X = Cl, 1 and X = Br, 2), {[Cu(L1)2(DMF)](NO3)2}, 3, {[Ag2(L1)2](SO4)}, 4, and {[Cu(L2)(DMSO)2(NO3)](NO3)}, 5. All compounds have been characterized by spectroscopic methods and their structures determined by X-ray crystallography.Complexes 1, 2 and 3 form 1-D double-stranded polymeric chains showing rhombic molecular squares with approximate dimensions of 16.95 × 19.13 Å2 for 1, 17.03 × 19.06 Å2 for 2 and 16.66 × 19.94 Å2 for 3. Complex 4 forms infinite 1-D zigzag polymeric chains, which are interlinked through a series of Ag–O interactions to form wavy 1-D ladder like chains, and complex 5 forms 1-D sinusoidal chains. While the L1 ligands in complexes 1, 2 and 3 adopt the cis conformation and that in complex 4 adopts trans conformation, the L2 ligand in complex 5 adopts the trans-anti conformation. The ligand conformations also differ in the dihedral angles between the pyridyl and phenyl rings. All complexes exhibit emissions which may be tentatively assigned as intraligand (IL) π → π* transition.  相似文献   

15.
Three new hybrid crystals of 2-aminophenol-HClO4 (2-AP-HClO4, 1), 3-aminophenol-HClO4 (3-AP-HClO4, 2) and 4-aminophenol-HClO4 (4-AP-HClO4, 3) were obtained and their crystal structures determined. The 1 crystallises in centrosymmetric space group C2/c of monoclinic system while the other two (2 and 3) crystallise in the non-centro symmetric space group P21 and P212121, respectively. The oppositely charged units of the crystals, i.e. positively charged 2-APH+, 3-APH+ and 4-APH+ and ClO4, interact via weak N+–HO and O–HO hydrogen bonds forming 3D-supramolecular network. Relative to KDP the SHG efficiencies are 0.62 for 2 and 0.33 for 3, measured at 1064 nm using the Kurtz–Perry method.  相似文献   

16.
A new ferrocene-containing dicarboxylate ligand, L = 5-ferrocene-1,3-benzenedicarboxylic acid, has been prepared. Self-assembly of L, M(II) salts (M = Co and Zn) and chelating ligands dpa or phen (dpa = 2,2′-dipyridylamine and phen = 1,10-phen) gave rise to four new coordination polymers {[Co(L)(dpa)] · 2MeOH}n (1), {[Zn(L)(dpa)] · 2MeOH}n (2), {[Co(L)(phen)(H2O)] · MeOH} (3), [Zn(L)(phen)(H2O)] · MeOH (4). The isostructural complexes 1 and 2 possess 1D helical chain structures with 21 screw axes along the b-direction, and the right- and left-handed helical chains are alternate arrayed into 2D layer structures through hydrogen-bonding interactions; while isostructural complexes 3 and 4 are 1D linear chain structures with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. A structural comparison of complexes 14 demonstrated that the characteristics of subsidiary ligands and slight difference in coordination models of L play very important role in the construction of the complexes. In addition, the redox properties of complexes 14, as well as the magnetic properties of complexes 1 and 3 are also investigated.  相似文献   

17.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

18.
Several copper(II) methanoato complexes, namely mononuclear [Cu(O2CH)2(2-mpy)2] (1) (2-mpy = 2-methylpyridine), binuclear [Cu2(μ-O2CH)4(2-mpy)2] (2), and the polynuclear {[Cu(μ-O2CH)2(2-mpy)2][Cu2(μ-O2CH)4]}n (3) and {Na2[Cu(μ-O2CH)2(O2CH)2][Cu2(μ-O2CH)4]}n (4), have been synthesized. The mononuclear complex 1 is formed by two asymmetric chelate methanoate anions and two 2-methylpyridine molecules, giving a highly distorted ‘elongated octahedral’ coordination sphere. Complex 1 decomposes outside the mother-liquid, transforming into a regular isolated binuclear paddle-wheel complex 2 with four intra-binuclear bridging methanoates and two axial 2-mpy ligands. The polynuclear complex 3 is formed of alternate mononuclear and binuclear building blocks resembling the central cores of 1 and 2, but with significant differences, especially for the methanoates of the mononuclear units. The oxygen atom of the mononuclear unit in the octahedral axial position in 3 is simultaneously coordinated to the axial position of the binuclear paddle-wheel central core, thus enabling a chain type of structure. A chain of alternate mononuclear and binuclear building blocks, as in the neutral compound 3, are found as well in the ionic polymeric compound 4, though two types of bridges are found in 4, while there is only one type in 3. Namely, the axial position of the octahedral mononuclear unit in 4 is occupied by the methanoate oxygen atom that is already a part of the binuclear paddle-wheel unit, while one equatorial methanoate from the mononuclear unit serves as a triatomic bridge to the axial position of the binuclear building block. A very strong antiferromagnetic interaction is found for all the complexes with the paddle-wheel building blocks [Cu2(μ-O2CH)4] 24 (−2J = 444–482 cm−1), attributed to the methanoate intra-binuclear bridges. On the other hand, this strong antiferromagnetism, found already at room temperature, reduces the intensity of the EPR S = 1 spin signals reported for the isolated paddle-wheel complex 2. For the polymeric 3, only the spin S = ½ signals are found in the EPR spectra, and they are assigned to the mononuclear building blocks. No signals with a clear origin are however seen in the room temperature EPR spectrum of the polymeric analogue 4, only the S = ½ signals in the low temperature spectra. This feature is suggested to be due to a specific influence between the adjacent S = 1 (binuclear) and S = ½ (mononuclear) species via their bridges.  相似文献   

19.
Lithiation of O-functionalized alkyl phenyl sulfides PhSCH2CH2CH2OR (R = Me, 1a; i-Pr, 1b; t-Bu, 1c; CPh3, 1d) with n-BuLi/tmeda in n-pentane resulted in the formation of α- and ortho-lithiated compounds [Li{CH(SPh)CH2CH2OR}(tmeda)] (α-2ad) and [Li{o-C6H4SCH2CH2CH2OR)(tmeda)] (o-2ad), respectively, which has been proved by subsequent reaction with n-Bu3SnCl yielding the requisite stannylated γ-OR-functionalized propyl phenyl sulfides n-Bu3SnCH(SPh)CH2CH2OR (α-3ad) and n-Bu3Sn(o-C6H4SCH2CH2CH2OR) (o-3ad). The α/ortho ratios were found to be dependent on the sterical demand of the substituent R. Stannylated alkyl phenyl sulfides α-3ac were found to react with n-BuLi/tmeda and n-BuLi yielding the pure α-lithiated compounds α-2ac and [Li{CH(SPh)CH2CH2OR}] (α-4ab), respectively, as white to yellowish powders. Single-crystal X-ray diffraction analysis of [Li{CH(SPh)CH2CH2Ot-Bu}(tmeda)] (α-2c) exhibited a distorted tetrahedral coordination of lithium having a chelating tmeda ligand and a C,O coordinated organyl ligand. Thus, α-2c is a typical organolithium inner complex.Lithiation of O-functionalized alkyl phenyl sulfones PhSO2CH2CH2CH2OR (R = Me, 5a; i-Pr, 5b; CPh3, 5c) with n-BuLi resulted in the exclusive formation of the α-lithiated products Li[CH(SO2Ph)CH2CH2OR] (6ac) that were found to react with n-Bu3SnCl yielding the requisite α-stannylated compounds n-Bu3SnCH(SO2Ph)CH2CH2OR (7ac). The identities of all lithium and tin compounds have been unambiguously proved by NMR spectroscopy (1H, 13C, 119Sn).  相似文献   

20.
Reaction of N-(4-R-phenyl)picolinamide (R = OCH3, CH3, H, Cl and NO2) with [Ir(PPh3)3Cl] in refluxing ethanol in the presence of a base (NEt3) affords two yellow complexes (1-R and 2-R). The 1-R complexes contain an amide ligand coordinated to the metal center as a monoanionic bidentate N,N donor along with two triphenylphosphines, a chloride and a hydride. The 2-R complexes contain an amide ligand coordinated to the metal center as a monoanionic bidentate N,N donor along with two triphenylphosphines and two hydrides. Similar reaction of N-(naphthyl)picolinamide with [Ir(PPh3)3Cl] affords two organometallic complexes, 3 and 4. In complex 3 the amide ligand is coordinated to the metal center, via C–H activation of the naphthyl ring at the 8-position, as a dianionic tridentate N,N,C donor, along with two triphenylphosphines and one chloride. Complex 4 is similar to complex 3, except a hydride is bonded to iridium instead of the chloride. Structures of the 1-OCH3, 2-Cl and 4 complexes have been determined by X-ray crystallography. All the complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a IrIII–IrIV oxidation within 0.50–1.16 V vs. SCE and a reduction of the coordinated amide ligand within −1.02 to −1.25 V vs. SCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号