首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
张晓丹  曹阳  贺军辉 《化学学报》2009,67(12):1277-1284
在溶液中以正己硫醇作稳定剂, 利用HAuCl4与HF处理后的硅纳米线(SiNWs)的氧化还原反应, 在SiNWs表面负载金纳米粒子(AuNPs). 通过调整HAuCl4的浓度, 得到了AuNPs粒径从3.2到7.0 nm的AuNPs/SiNWs复合结构, 并对这种复合结构进行了紫外-可见吸收光谱和荧光光谱研究. 紫外-可见吸收光谱研究表明, 负载不同粒径的AuNPs的SiNWs在530~580 nm间有明显的由AuNPs表面等离子体共振引起的吸收, 且随着AuNPs粒径的增加, 该吸收峰发生红移. 负载前后的荧光光谱表明, 在红光和绿光区负载AuNPs的SiNWs的荧光峰与HF处理后SiNWs的荧光峰峰形相当, 峰位变化不大; 但在蓝光区, 不同于HF处理前后SiNWs的发射峰(464 nm左右), 负载了AuNPs的SiNWs在423 nm的位置处出现了强荧光峰, 这个峰是AuNPs费米能级的电子与sp或d带的空穴辐射复合产生的.  相似文献   

2.
利用寡聚腺嘌呤序列(OAS)与金的强相互作用,在金纳米粒子(AuNPs)上固定不同密度DNA探针(DNAprobe),详细探究不同条件(OAS长度、AuNPs粒径、NaCl浓度等)下单链DNAprobe的固定效果,以及制备的纳米探针(Au-probe)与互补DNA目标分子(DNAtarget)的杂交性能.利用透射电子显微镜(TEM)、紫外可见分光光度计(UV-Vis)、激光粒度仪等对制备的AuNPs的形貌、粒径、表面DNAprobe固定及杂交性能等进行了研究.结果表明,随OAS碱基数量由10增加到30和50,Au-probe上固定的DNAprobe数量降低.对粒径为10.2和24.3 nm的AuNPs,杂交效果最佳的NaCl浓度分别为300和25 mmol/L.随着AuNPs粒径增大,AuNPs单位面积上的DNAprobe固定量及DNAtarget杂交量均呈下降趋势.  相似文献   

3.
Au纳米粒子(AuNPs),特别是小粒径(~1 nm)AuNPs的粒径、形貌和表面状态对其催化性能有着重要影响。本文介绍了以小粒径Ag纳米粒子(5 nm)为牺牲剂,通过金属置换反应,在SiO_2亚微球上生长表面裸露的小粒径AuNPs。由于Au NPs表面完全暴露该材料在氧化还原催化方面具有广阔的应用前景。  相似文献   

4.
采用柠檬酸钠还原氯金酸的方法,制备出粒径均一的金纳米粒子(AuNPs),通过加入二水合双(对-磺酰苯基)苯基膦化二钾盐(BSPP),增强了AuNPs体系的分散性与稳定性.选用直径为15和40nm的AuNPs,用不同序列巯基修饰的单链DNA连接到其表面,通过DNA链的杂交,形成不同结构的金纳米粒子组装体.通过改变加入DNA延长连接单元的比例,可以控制金纳米粒子组装体具有连续离散型的1∶1,2∶1和3∶1纳米结构.  相似文献   

5.
以三联吡啶钌(Ru(bpy)3)为内核材料,通过反相微乳液法合成了表面带氨基的核壳结构荧光纳米粒子Ru(bpy)3/SiO2,利用透射电子显微镜、荧光光谱、紫外-可见光谱等手段进行表征,并进行了光稳定性、荧光分子泄露与纳米粒子表面氨基测定等实验,结果表明: 所合成的纳米粒子表面带氨基活性基团,每毫克纳米粒子约含385 nmol氨基,纳米粒子呈规则球形,大小均一,单分散性好,平均粒径为(70±6) nm,具有很好的光稳定性.用100 W氙灯在最大发射波长照射90 min后,其荧光强度仅衰减8%;在水溶液中不易发生染料泄露,连续超声1 h后,染料泄露少于0.05%.以合成的纳米粒子作荧光探针标记链霉亲和素后应用于蛋白质微阵列芯片检测HIV p24抗原.结果显示,荧光强度与p24浓度呈良好的正相关性,检出限为3.1 μg/L.本纳米粒子作为新型荧光探针,可应用于高灵敏检测的蛋白质微阵列芯片及荧光免疫分析等系统.  相似文献   

6.
金纳米粒子(AuNPs)是构建用于诊断和治疗的纳米药物/探针的理想纳米材料之一,因此研究AuNPs与细胞的相互作用具有重要意义。 本文详细分析了金纳米簇(AuNCs)、球形金纳米粒子A(AuNPss)、金纳米球壳(AuNSs)和金纳米棒(AuNRs)等不同形貌的Au NPs对不同细胞模型的细胞毒性;讨论了AuNPs的理化性质(大小、形状、化学功能和表面电荷)对其细胞毒性的影响。 总结了AuNP细胞毒性研究遇到的挑战并提出相应解决方法。  相似文献   

7.
纳米金粒子与R-藻红蛋白的相互作用   总被引:1,自引:1,他引:1  
以NaBH4为还原剂, 采用化学还原法制备了纳米金溶胶, 发现以pH=7的金前驱液还原得到的纳米金粒子具有最强的紫外吸收(525 nm), 当以聚乙烯吡咯烷酮(PVP)为稳定剂时, 此吸收紫移到510 nm. TEM观察金粒子大小为5~8 nm. PVP、聚乙烯醇(PVA)和吐温-80等能较好地稳定纳米金粒子, 而十二烷基苯磺酸钠、PEG-1000和OP乳化剂等则没有稳定作用. 以紫外-可见光谱(UV-Vis)、X光荧光光谱(XRF)、透射电子显微镜(TEM)等研究了纳米金粒子与R-藻红蛋白的相互作用, 发现R-藻红蛋白本身对纳米金粒子具有良好的稳定作用. 当R-藻红蛋白与纳米金粒子共存时, R-藻红蛋白所具有的538 nm吸收带强度有所增强, 并发生紫移, 同时578 nm的荧光强度也明显减弱, 这表明R-藻红蛋白与纳米金粒子的相互作用对R-藻红蛋白的空间结构产生了影响, 导致位于R-藻红蛋白外缘藻红素发色团(PEB)的微环境发生了改变. 凝胶柱层析及分光光度分析结果进一步证实了金纳米粒子与藻红蛋白存在明显的相互作用, 这种相互作用可能与藻红蛋白分子中所包含的氨基基团有关.  相似文献   

8.
高建华  翟海云  陈彬 《分析化学》2002,30(3):295-297
研究了Ce(Ⅲ)-杯[8]芳烃-蛋白质体系的相互作用和荧光发光情况.实验结果表明:Ce(Ⅲ)可产生λex,max=254nm,λem,max=361nm的自身荧光.杯[8]芳烃在一定条件下能猝灭其荧光,加入蛋白质后体系的荧光又进一步猝灭,故可利用杯[8]芳烃-Ce(Ⅲ)形成的镧系超分子作荧光探针测定蛋白质,同时,初步探讨了体系的相互作用机理.该实验方法的线性范围为1.1~11.4mg/L;检出限为2.83×10-3 mg/L.本方法简便、可靠、灵敏度高.  相似文献   

9.
用0.1g·L^(-1)氯金酸溶液100mL与10g·L^(-1)柠檬酸三钠溶液2mL反应制成红色纳米金颗粒(AuNPs)溶液,AuNPs粒径约为12nm,AuNPs溶液在波长518nm处有特征吸收峰。当三聚氰胺与AuNPs同处于一溶液中时,三聚氰胺的诱导作用使AuNPs团聚,其溶液的颜色由原来的红色变成蓝色(即在波长680nm附近出现新的吸收带)。三聚氰胺的检测范围为0.1~28.0μmol·L^(-1),测定下限(3σ)为0.1μmol·L^(-1)。据此,提出了测定牛奶中三聚氰胺含量的分光光度法。用标准加入法进行回收试验,回收率在99.0%~108%之间。  相似文献   

10.
以苯乙烯(St)为主要单体,对苯乙烯磺酸钠(NaSS)和可聚合稀土荧光配合物(Eu(AA)(BA)_2Phen)为功能性单体,通过微波辐射无皂乳液聚合制备了Poly(St-NaSS-Eu(AA)(BA)_2Phen)共聚物荧光乳液纳米粒子.利用红外光谱对共聚物的结构进行了证实;通过透射电子显微镜和扫描电子显微镜观察了粒子的形态、结构及大小;利用激光光散射粒度仪测试了粒子的大小及分布;结果发现所制备的共聚物荧光乳液纳米粒子呈大小均一的球形形状,粒径大小约为35 nm;采用荧光分光光度计测试,发现共聚物纳米粒子在595 nm和619 nm处出现Eu~(3+)的特征发射光谱,具有良好的荧光效果.  相似文献   

11.
《Analytical letters》2012,45(4):701-710
The 15~25 nm water soluble and stable gold nanoparticles were synthesized and studied for their spectral properties and interactions with proteins. Results showed that 15 nm gold nanoparticles can emit near infrared fluorescence with an emission peak of 811.2 nm under the excitation of 538 nm. The study also showed that proteins can obviously enhance the near infrared fluorescence intensity of gold nanoparticles. Under the optimized conditions, there is a linear relationship between the fluorescence intensity enhancement of the system and the concentrations of the proteins, which can be used in a new method for the determination of trace proteins. The mechanisms of the interaction and the fluorescence enhancement of the nano-gold-protein system were also studied.  相似文献   

12.
Most recently, gold nanoparticles due to anticancer properties have been considered in medical science. So the aim of the study was green synthesis of gold nanoparticles using Ocimum basilicum extract and its anticancer activity. The prepared Au nanoparticles were characterized by advanced physicochemical techniques like Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD) and UV–vis spectroscopy study. It has been established that Au nanoparticles have a spherical shape with a mean diameter from 19 to 44 nm. In the cellular and molecular part of the recent study, the treated cells with Au nanoparticles were assessed by MTT assay for 48 h about the cytotoxicity and anti-human laryngeal cancer properties on normal (HUVEC) and cancer (HEp-2, TU212, KB, UM-SCC-5, UM-SCC-11A and UM-SCC-11B) cell lines. In the antioxidant test, the IC50 of Au nanoparticles and BHT against DPPH free radicals were 228 and 208 µg/mL, respectively. The IC50 of Au nanoparticles were 174, 231, 179, 143, 230, and 216 µg/mL against HEp-2, TU212, KB, UM-SCC-5, UM-SCC-11A and UM-SCC-11B cell lines, respectively. The viability of malignant cell lines reduced dose-dependently in the presence of Au nanoparticles. It appears that the anti-cancer effect of Au nanoparticles e to their antioxidant effects.  相似文献   

13.
We report on the redox behaviour of the microperoxidase‐11 (MP‐11) which has been electrostatically immobilized in a matrix of chitosan‐embedded gold nanoparticles on the surface of a glassy carbon electrode. MP‐11 contains a covalently bound heme c as the redox active group that exchanges electrons with the electrode via the gold nanoparticles. Electroactive surface concentration of MP‐11 at high scan rate is between 350±50 pmol cm?2, which reflects a multilayer process. The formal potential (E°′) of MP‐11 in the gold nanoparticles‐chitosan film was estimated to be ?(267.7±2.9) mV at pH 7.0. The heterogeneous electron transfer rate constant (ks) starts at 1.21 s?1 and levels off at 6.45 s?1 in the scan rate range from 0.1 to 2.0 V s?1. Oxidation and reduction of MP‐11 by hydrogen peroxide and superoxide, respectively have been coupled to the direct electron transfer of MP‐11.  相似文献   

14.
The preparation and characterization of gold nanoparticles (~6 nm in diameter) modified with mono-6-thio-β-cyclodextrin (II) is described. The resulting monolayer-protected gold nanoparticles are water-soluble and more stable. The concentration of II plays a crucial role for the distribution of the modified nanoparticles. When the ratio of concentration of II to HAuCl4,[II]/[HAuCl4] ≥ 0.93, a stable gold nanoparticle with uniform distribution and diameter of 6.0 ± 0.9 nm will be obtained. The recognition of modified gold nanoparticles to organic guest molecule is researched. The modified gold nanoparticles can make the electrochemical reduction current of nitrobenzene decrease and can be self-assembled in three-dimensional to form spherical clusters with ligand of methylene green.  相似文献   

15.
《Analytical letters》2012,45(18):2707-2716
Selective energy transfer between quantum dots and gold nanoparticles was used to simultaneously detect mutations in the epidermal growth factor receptor (EGFR) gene. We functionalized the surface of gold nanoparticles and green and red-emitting quantum dots using four different probe DNAs that were designed to be a perfect complementary to an in-frame deletion mutation in exon 19 or L858 R point mutation in exon 21 of EGFR. We found that the presence of the deletion mutation in exon 19 in target oligonucleotides caused fluorescence quenching at 525 nm due to energy transfer from green-emitting quantum dots to gold nanoparticles, whereas point mutation in exon 21 resulted in quenching at 620 nm due to energy transfer from red-emitting quantum dots to gold nanoparticles. This method could successfully be used to simultaneously detect the presence of two types of mutations in EGFR. We also defined a parameter (i.e., the extent of quenching) to quantify fluorescence quenching phenomenon. By varying the fraction of mutant type DNA in target oligonucleotides, we showed that detection sensitivity based on the extent of quenching was about 5%, which is lower than the conventional direct sequencing method.  相似文献   

16.
The high quenching efficiency of metal nanoparticles has facilitated its use as quenchers in molecular beacons. To optimize this system, a good understanding of the many factors that influence molecular beacon performance is required. In this study, molecular beacon performance was evaluated as a function of gold nanoparticle size and its immobilization characteristics. Gold nanoparticles of 4 nm, 15 nm and 87 nm diameter, were immobilized onto glass slides. Each size regime offered distinctive optical properties for fluorescence quenching of molecular dyes that were conjugated to oligonucleotides that were immobilized to the gold nanoparticles. Rigid double stranded DNA was used as a model to place fluorophores at different distances from the gold nanoparticles. The effect of particle size and also the immobilization density of nanoparticles was evaluated. The 4 nm and 87 nm gold nanoparticles offered the highest sensitivity in terms of the change in fluorescence intensity as a function of distance (3-fold improvement for Cy5). The optical properties of the molecular fluorophore was of significance, with Cy5 offering higher contrast ratios than Cy3 due to the red-shifted emission spectrum relative to the plasmon peak. A high density of gold nanoparticles reduced contrast ratios, indicating preference for a monolayer of immobilized nanoparticles when considering analytical performance. Molecular beacon probes were then used in place of the double stranded oligonucleotides. There was a strong dependence of molecular beacon performance on the length of a linker used for attachment to the nanoparticle surface. The optimal optical performance was obtained with 4 nm gold nanoparticles that were immobilized as monolayers of low density (5.7 × 1011 particles cm−2) on glass surfaces. These nanoparticle surfaces offered a 2-fold improvement in analytical performance of the molecular beacons when compared to other nanoparticle sizes investigated. The principles developed in this study would assist in the design of solid phase molecular beacons using gold nanoparticles.  相似文献   

17.
A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of ~2 nm, while silver particles have 4–5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.  相似文献   

18.
A fast capillary zone electrophoresis (CZE) method using dimethyl-β-cyclodextrin (DM-β-CD) as modifier with tetrabutylammonium chloride (TBAC) as addition has been developed for the chiral separation of (±)-ephedrine ((±)-EP), (±)-pseudoephedrine ((±)-PP), (±)-N-methylephedrine ((±)-MP), and (±)-norephedrine ((±)-NP). The electrophoretic separation was performed using a 35-cm × 50 μm I.D. (30-cm effective length) fused silica capillary. Samples were introduced under electromigrated injection at 5 kV for 4 s, and the running voltage was 15 kV at the injector end of the capillary. Within 19 min, eight ephedrine compounds were separated and detected at 210 nm. The method was successively applied to the determination of the ephedrine enantiomers in the Chinese herbal extract from Ephedra sinica and its medicinal preparation (Xiaoerqing feiwan). Parameters affecting the resolution between (+) and (-)-enantiomers, such as pH, cyclodextrin type and concentration, organic modifier, and tetraalkylammonium reagents, were reported. The text was submitted by the authors in English.  相似文献   

19.
A one-dimensional assembly of gold nanoparticles chemically bonded to pi-conjugated porphyrin polymers was prepared on a chemically modified glass surface and on an undoped naturally oxidized silicon surface by the following methods: pi-conjugated porphyrin polymers were prepared by oxidative coupling of 5,15-diethynyl-10,20-bis-((4-dendron)phenyl) porphyrin (6), and its homologues (larger than 40-mer) were collected by analytical gel permeation chromatography (GPC). The porphyrin polymers (>40-mer) were deposited using the Langmuir-Blodgett (LB) method on substrate surfaces, which were then soaked in a solution of gold nanoparticles (2.7 +/- 0.8 nm) protected with t-dodecanethiol and 4-pyridineethanethiol. The topographical images of the surface observed by tapping mode atomic force microscopy (AFM) showed that the polymers could be dispersed on both substrates, with a height of 2.8 +/- 0.5 nm on the modified glass and 3.1 +/- 0.5 nm on silicon. The height clearly increased after soaking in the gold nanoparticle solution, to 5.3 +/- 0.5 nm on glass and 5.4 +/- 0.7 nm on silicon. The differences in height (2.5 nm on glass and 2.3 nm on silicon) corresponded to the diameter of the gold nanoparticles bonded to the porphyrin polymers. The distance between gold nanoparticles observed in scanning electron microscopic images was ca. 5 nm, indicating that they were bonded at every four or five porphyrin units.  相似文献   

20.
A method is advanced for preparing gold nanoparticles (NPs) at 50°C in aqueous acrylamide (AAm), which has the dual function of a reducing agent for HAuCl4 and a protective ligand for NPs. Nanoparticles have gold cores with the average size dAu = 20.9 ± 3.6 nm. The growth kinetics of NPs has been studied. Films of NPs have been produced on glass, silica, silicon, and polyethylene terephthalate (PET) substrates. The NPs and films have been characterized by UV-Vis and IR spectroscopy, X-ray powder diffraction, transmission and scanning electron microscopy, and atomic-force microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号