首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 168 毫秒
1.
本文以金纳米棒作为信号感应载体,在pH9.4弱碱性条件下通过维生素C还原AgNO3从而在金纳米棒表面形成包裹层,进而改变金纳米棒的等离子体共振吸收位移,据此建立了一种快速、简单、灵敏的维生素C的等离子体共振吸收位移测定法.方法的线性范围为0.25~10.0μmol/L,检出限(3σ)为0.12mol/L.该方法成功用于维生素C片剂分析,加标回收率95.4%~106.0%.与药典方法进行对比,有满意的精密度和准确度.  相似文献   

2.
采用金纳米棒吸收光谱法测定水中Hg(Ⅱ)的浓度。研究表明,金纳米棒比金纳米球具有更高的长波等离激元共振峰(LSPR)位移,不同长径比的金纳米棒对LSPR位移影响不大;当p H7时,溶液中p H越小LSPR位移越小,当p H7时,LSPR位移基本不变。LSPR位移在Hg(Ⅱ)浓度为3μmol/L前后表现出两度线性关系,Hg(Ⅱ)浓度大于20μmol/L时金纳米棒与汞完全形成合金,测定Hg(Ⅱ)的检出限为41 nmol/L。  相似文献   

3.
以不同阴离子表面活性剂作为添加剂种子生长法制备金纳米棒,并考察阴离子表面活性剂种类对金纳米棒形貌及光学性质的影响。在十二烷基苯基磺酸钠(SDBS)存在下,金纳米棒的产率明显高于使用十二烷基磺酸钠的反应体系。对添加SDBS的种子生长法制备金纳米棒的反应条件进行优化,得到十六烷基三甲基溴化铵、SDBS、抗坏血酸和硝酸银的最佳浓度分别为0.04 mol.L-1、2.4 mmol.L-1、1.2 mmol.L-1和0.08 mmol.L-1。在此条件下,金纳米棒的生长在30 min内完成,所制备的金纳米棒表面等离子共振吸收峰位于823 nm,其横纵比为(5±0.03)。当改变生长液中硝酸银浓度时,金纳米棒的尺寸也随之发生改变。此外,我们还探讨了SDBS的作用机理。相对于经典种子生长法,新方法制备纳米金棒在尺寸可调性、单分散性和生物毒性方面明显改善,可广泛应用于各种光学及生物分析。  相似文献   

4.
金纳米粒子自球形向棒状的转变和生长的光化学法研究   总被引:8,自引:0,他引:8  
杨生春  董守安  唐春  李品将 《化学学报》2005,63(10):873-879
在含有HAuCl4和十六烷基三甲基氯化铵(CTMAC)的DMF-H2O-丙酮介质中, 以CTMAC形成的胶束为模板, 丙酮为光敏剂, 光化学还原法制备了不同长径比的棒状金纳米粒子. 通过改变DMF∶H2O (V/V)的比例来改变溶液的极性, 增加胶束聚集数, 实现了自球形胶束向棒状的转变, 从而得到以金纳米棒占优势的金胶体溶液. 研究了HAuCl4和CTMAC的浓度以及照射时间对金纳米棒生长的影响, 在最佳实验条件下, 获得了直径在20~22 nm, 长为0.5~3 μm的金纳米棒, 讨论了光化学反应和金纳米粒子在形成的棒状胶束中的自组装生长机理.  相似文献   

5.
将柠檬酸三钠与硼氢化钠还原氯金酸制备纳米金颗粒,采用一步恒电位沉积的方法在碳纤维超微电极上沉积纳米金颗粒,并对电极进行电化学表征。分别对100μmol/L DA、1mmol/L AA在该电极上修饰前后的电化学行为进行了研究,结果表明在浓度为1 mmol/L抗坏血酸共存下,DA的浓度(0. 1~10μmol/L)与氧化峰电流成正比,线性回归方程为Ip(μA)=200 c(μmol/L)+2×10~(-4),相关系数R~2=0. 9979,线性范围0. 1~10μmol/L,检出限为1. 28×10~(-2)μmol/L (S/N=3)。方法可用于较高浓度抗坏血酸共存下对多巴胺的选择性测定。  相似文献   

6.
为简单有效地制备高活性表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy,SERS)基底。本文采用静电纺丝聚乙烯醇(PVA)/聚丙烯酸(PAA)纳米纤维为支撑材料,通过直接浸泡的方法,利用金纳米棒与电纺纤维之间的静电力,使纳米棒在纤维表面自组装,得到了性能优异的SERS基底。通过透射电子显微镜、扫描电子显微镜对金纳米棒以及不同状态下的电纺纤维的形貌进行表征,结果表明,金纳米棒均匀且密集地负载在纤维表面。通过设置不同的浸泡时间确定了金纳米棒组装平衡的时间为12 h,并通过调控纺丝时间和金纳米棒的浓度发现随着纺丝时间和金纳米棒浓度的增加,复合纤维膜SERS增强效果随之提升。该复合纤维膜具有优异的SERS均匀性,并且能够检测到浓度低至10~(-10)mol/L的4-氨基苯硫酚的存在。  相似文献   

7.
构建了一种基于纳米金银染放大的可视化葡萄糖传感器。采用柠檬酸钠还原法制备了粒径为13 nm的纳米金,其分散在溶液中呈酒红色。葡萄糖可将托伦试剂还原为单质Ag而沉积在纳米金的表面,形成Au-Ag核壳型纳米颗粒,使溶液的吸收光谱发生蓝移,颜色由酒红色变为黄色。考察了纳米金浓度和托伦试剂浓度的影响,在优化条件下,溶液在430 nm处的吸光度和葡萄糖浓度在0.5~50μmol/L的范围内呈现良好的线性关系(R2=0.9948),检出限为0.09μmol/L。利用本法对葡萄糖加标的血液样品进行分析,1μmol/L和5μmol/L葡萄糖的回收率分别为94.3%和104.9%,相对标准偏差为4.7%和3.5%。该方法可用于血糖检测。  相似文献   

8.
以金纳米棒为荧光探针,基于H2O2对金纳米棒的氧化作用,导致金纳米棒的荧光光谱发生变化,建立一种对H2O2检测以及评价多酚化合物抗氧化能力的新方法。采用透射电镜(TEM)和局域表面等离子共振(LSPR)光谱对金纳米棒进行表征。在最佳实验条件下,H2O2氧化金纳米棒使其719 nm处的荧光峰下降,且H2O2浓度在2.0×10#6~3.5×10#5mol/L范围内与荧光强度呈线性关系,检出限为8.0×10#7mol/L(S/N=3)。进一步在该体系中加入多酚化合物,利用其具有清除活性氧的能力,可使金纳米棒的荧光信号的恢复,从而评价化合物的抗氧化能力。以芒果苷(MGF)、白藜芦醇(RSV)、瑞香素(DAP)研究此体系对活性氧的清除作用,抗氧化能力依次为:MGF>RSV>DAP,此结果与DPPH法的检测结果相符。  相似文献   

9.
在氨性溶液中,以HAuCl4和AgNO3为原料,采用电化学还原法直接在氧化铟锡(ITO)导电玻璃基底上沉积金银合金膜,然后用HClO4溶液去合金化,较活泼的金属银溶解,从而制备了高表面积的纳米孔金膜修饰电极,并对修饰电极进行了表征。纳米孔金膜的表面积可通过调控电解的条件来控制,所制备的纳米孔金膜电极可采用L-半胱胺酸自组装法进一步功能化,并应用于高灵敏和高选择性测定Cu2+。在优化实验条件下,Cu2+的吸附时间为5 min,采用线性扫描伏安法测定Cu2+浓度的线性范围为0.05~4.0μmol/L,检出限为0.03μmol/L,对1μmol/L Cu2+平行测定9次,其相对标准偏差为4.3%。本方法用于环境水样中Cu2+的测定,结果令人满意。  相似文献   

10.
使用电感耦合等离子原子发射光谱(ICP-AES)研究了贵金属铑和NaBH4在酸性水溶液中的化学蒸气发生反应的条件,并测定了有机合成催化剂中的铑。研究结果表明:在NaBH4和样品溶液流速为2mL/min、废液排放流速为6mL/min的条件下的最佳蒸气发生条件为:载气流速0.4L/min、HNO3浓度为1.0mol/L、NaBH4浓度为1.2%(m/V)。研究中获得的铑化学蒸气进样效率是常规的气动雾化进样效率的2.7倍;检出限是6.9μg/L,略优于气动雾化法;线性范围20~1500μg/L;线性相关系数是0.9986;RSD是1.6%。样品分析加标回收率分别是94%和97%。用本法测得的样品值与原子吸收法的测得值吻合很好。  相似文献   

11.
介绍纳米金–壳聚糖修饰电极的制备方法及其测定抗坏血酸的分析应用。采用电沉积方法,将氯金酸与壳聚糖的混合电解液直接共沉积,制备了壳聚糖–纳米金修饰玻碳电极的电化学传感器。利用循环伏安法研究了抗坏血酸浓度、p H值等对抗坏血酸在修饰电极上的电化学行为的影响。实验结果表明,修饰电极对抗坏血酸具有良好的电催化氧化作用,抗坏血酸浓度在5×10~(–5)~1×10~(–3) mol/L范围内线性良好,回归方程为I_p=0.433 8c+0.881 9,相关系数为0.998 71。该法可指导纳米金–壳聚糖修饰电极的制备及抗坏血酸含量的测定。  相似文献   

12.
A direct seedless method for the continuous synthesis of gold nanorods has been developed using a sequential rotating tube-narrow channel processing microfluidic configuration, with the stock feed solutions (HAuCl(4)/CTAB/acetylacetone and AgNO(3)/CTAB/carbonate buffer) being stable for weeks.  相似文献   

13.
In recent years, much effort has been made to produce gold (Au) nanorods of different sizes through the use of binary surfactant mixtures via a seed-mediated growth approach. However, how the ratio of two different surfactants influences the shape of the resulting Au nanoparticles remains to be elucidated. Here, we report the shape-controlled synthesis of Au nanoparticles using a binary surfactant mixture of CTAB (cetyltrimethylammonium bromide) and DDAB (didodecyldimethylammonium bromide) via a silver-assisted seed-mediated growth approach. Decreasing the CTAB/DDAB ratio results in a shape transition from Au nanorods to elongated tetrahexahedra and finally to Au bipyramids. The results showed significant improvement in the yield of Au bipyramidal type nanoparticles in different sizes (nm to μm) by using binary surfactant mixtures without any need for shape selection procedure. By varying the pH and concentration of ascorbic acid, we can control the shape and size of Au nanoparticles (i.e., truncated bipyramids, dogbones, and nanodumbbells) at fixed CTAB/DDAB ratios. A preliminary growth mechanism has been proposed based on the change in the mixed micelle soft-template induced by the increasing concentration of DDAB and reaction parameters (i.e., pH, concentration of ascorbic acid). These results constitute the advances in the understanding for synthesizing anisotropic Au nanoparticles of tunable optical properties via engineering the design of a soft-template. These anisotropic Au nanoparticles, especially, bipyramids of different morphologies and sizes are potential candidates for the enhancement of the optical response and developing label-free biosensing devices.  相似文献   

14.
The flower-like silver nanoparticles have been synthesized by reducing silver nitrate (AgNO3) with ascorbic acid (AA) as the reductant and polyvinyl pyrrolidone (PVP) as the capping agent under vigorous stirring. Such flower-like nanoparticles are aggregates of small nanoplates and nanorods. They were tested as substrates for the surface-enhanced Raman scattering (SERS), showing high sensitivity for detecting Rhodamine 6G (R6G) at a concentration as low as 10-7 mol/L. It has been found that replacing mechanical stirring with ultrasound sonication would drastically change the particle morphology, from flower-like nanoparticles to well-dispersed smaller nanoparticles. Furthermore, when trace amounts of NaCl were added into the reagents, well-dispersed Ag nanoparticles formed even in vigorous stirring. These phenomena can be explained with the diffusion and reactant supply during nucleation and growth of Ag nanoparticles.  相似文献   

15.
Gold nanoparticles have shown potential in photothermal cancer therapy and optoelectronic technology. In both applications, a call for small size nanorods is warranted. In the present work, a one-pot seedless synthetic technique has been developed to prepare relatively small monodisperse gold nanorods with average dimensions (length × width) of 18 × 4.5 nm, 25 × 5 nm, 15 × 4.5 nm, and 10 × 2.5 nm. In this method, the pH was found to play a crucial role in the monodispersity of the nanorods when the NaBH(4) concentration of the growth solution was adjusted to control the reduction rate of the gold ions. At the optimized pH and NaBH(4) concentrations, smaller gold nanorods were produced by adjusting the CTAB concentration in the growth solution. In addition, the concentration of silver ions in the growth solution was found to be pivotal in controlling the aspect ratio of the nanorods. The extinction coefficient values for the small gold nanorods synthesized with three different aspect ratios were estimated using the absorption spectra, size distributions, and the atomic spectroscopic analysis data. The previously accepted relationships between the extinction coefficient or the longitudinal band wavelength values and the nanorods' aspect ratios found for the large nanorods do not extend to the small size domain reported in the present work. The failure of extending these relationships over larger sizes is a result of the interaction of light with the large rods giving an extinction band which results mostly from scattering processes while the extinction of the small nanorods results from absorption processes.  相似文献   

16.
以金纳米花为种子, 抗坏血酸和硝酸银混合物作为生长溶液制备了Au-Ag纳米花. 当Ag/Au的摩尔比从0增加到0.3时, 银可以在Au种子表面沉积, 得到的Au-Ag纳米花光谱在592~518 nm之间连续可调, 同时纳米花的枝长逐渐减小; 而当Ag/Au摩尔比大于0.3时, 还原的银出现自成核现象. 与Au纳米花相比, Au-Ag纳米花体现出了更好的Raman增强活性.  相似文献   

17.
采用水热法制备了含有活性铜的碳点,利用荧光光谱和紫外可见吸收光谱对其光学性质进行了表征.通过电沉积法将其修饰于玻碳电极表面, 构建了电化学生物传感器,采用循环伏安法、交流阻抗法和差分脉冲伏安法对电极的电化学行为进行了考察, 并对其电化学反应机理进行了探讨.结果表明,此传感器对尿酸具有良好的电催化效果,可有效消除抗坏血酸和多巴胺等物质的干扰.在最佳条件下,氧化峰电流与尿酸的浓度在1.00~300 μmol/L范围内呈良好的线性关系, 检出限为0.30 μmol/L(S/N=3).此传感器具有制作简单、选择性好、灵敏度高和线性范围宽等优点,有望应用于实际样品的检测.  相似文献   

18.
In the present work a central composite design based on response surface methodology (RSM) is employed for fine tuning of the aspect ratios of seed-mediated synthesized gold nanorods (GNRs). The relations between the affecting parameters, including ratio of l-ascorbic acid to Au3+ ions, concentrations of silver nitrate, CTAB, and CTAB-capped gold seeds, were explored using a RSM model. It is observed that the effect of each parameter on the aspect ratio of developing nanorods highly depends on the value of the other parameters. The concentrations of silver ions, ascorbic acid and seeds are found to have a high contribution in controlling the aspect ratios of NRs. The optimized parameters led to a high yield synthesis of gold nanorods with an ideal aspect ratio ranging from 1 (spherical particle) to 4.9. In addition, corresponding tunable surface Plasmon absorption band has been extended to 880 nm. The resulted nanorods were characterized by UV–visible spectrometry and transmission electron microscopy.  相似文献   

19.
以石墨箔(GF)为工作电极, 采用循环伏安法(CV), 通过电化学聚合, 制备了聚苯胺(PANI)纳米纤维修饰GF电极(Nano-PANI/GF). 利用红外光谱(FTIR)研究了Nano-PANI/GF修饰电极上聚合物的组成, 利用扫描电镜(SEM)观测了Nano-PANI/GF修饰电极的表面形貌. 利用循环伏安法研究了Nano-PANI/GF修饰电极在0.1 mol/L磷酸盐缓冲溶液(pH=6.9)中的电化学活性, 发现Nano-PANI/GF修饰电极在中性溶液中有良好的电化学活性. Nano-PANI/GF修饰电极对抗坏血酸(AA)电化学氧化的催化作用结果表明, 在0.2 V(vs. SCE)电位下, 在浓度范围1.7~2.0×103 μmol/L内, 抗坏血酸的氧化电流与浓度呈良好线性关系, 线性方程式为y=0.00013x+0.0031. 修饰电极对抗坏血酸的最低检测限为1.7 μmol/L(S/N=3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号