首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
余琼卫  方凯敏  何小梅  郑杰  冯钰锜 《色谱》2018,36(3):237-244
采用液相沉积法在棉花纤维的表面成功沉积了纳米氧化锆颗粒,并将其装填在移液枪的吸头内,通过移液枪的抽吸实现对磷酸化多肽的萃取,萃取过程只需要2 min,方法简单、快速。该材料不仅可以从β-酪蛋白酶解物这种简单的体系中萃取出9个磷酸化多肽,还可以从物质的量比为1∶100的β-酪蛋白酶解物和牛血清白蛋白(BSA)酶解物混合物这类含有大量非磷酸化多肽的复杂样品中萃取出4种磷酸化多肽,且没有非磷酸化多肽被检出,表现出较好的萃取选择性。将该材料应用于人血清和脱脂牛奶这两种复杂实际样品的酶解物中磷酸化多肽的快速富集萃取,分别检测出5种和9种磷酸化多肽,均表现出较好的选择性。  相似文献   

2.
设计并合成了新型基于苯并噻唑的荧光探针L1和L2。通过荧光光谱滴定实验研究了其在DMSO/H_2O(1∶1,V/V,HEPES,p H=7.2)中对Li~+,Na~+,K~+,Ag~+,Cu~(2+),Ni~(2+),Zn~(2+),Mn~(2+),Cd~(2+),Hg~(2+),Co~(2+),Mg~(2+),Ca~(2+),Ba~(2+),Al~(3+),Cr~(3+),Fe~(3+)等不同金属离子的选择性识别能力,结果表明,探针对Fe~(3+)表现出较高的选择性,并与Fe~(3+)形成1∶1配合物,络合常数为(2.36×10~3)。其他常见金属离子的存在对铁离子引起的荧光淬灭无影响。探针L2还被用于活细胞中铁离子的检测。  相似文献   

3.
谢青  胡巧云  郑琼  林子俺 《分析测试学报》2019,38(10):1228-1233
采用St?ber法,以四乙氧基硅烷(TEOS)和γ-巯丙基三甲氧基硅烷(γ-MPTS)为前驱体合成了硅球纳米粒子,并结合"巯-烯"点击反应和"一锅法",制备得到固载Ti~(4+)的纳米复合硅球。通过红外光谱、透射电镜等方法对材料进行表征,利用蛋白吸附实验以及凝胶电泳等方法探究了该亲和材料对磷酸化蛋白的分离富集效果。结果表明,该纳米复合材料分散性好,粒径均一,对磷酸化蛋白(α-酪蛋白)的最大吸附容量(12.27μmol/g)远大于非磷酸化蛋白(辣根过氧化物酶,1.12μmol/g),且能从牛奶实际样品中分离富集磷酸化蛋白。  相似文献   

4.
提出一种除盐-富集串联用于磷酸肽富集研究的思路。选用C18柱和铈(Ⅳ)修饰的壳聚糖材料进行脱盐实验,以制备的基于聚合物基体螯合Fe3+的亲和色谱材料为富集材料。将直接富集和串联策略应用到标准品和血清中,研究结果表明,该富集材料具有高选择性和高灵敏度(1.6 fmol),铈(Ⅳ)修饰的壳聚糖材料前提下的串联策略能明显降低样品的复杂性。相比直接富集方法,能够提高磷酸化肽的覆盖率。  相似文献   

5.
以硫脲、聚乙烯亚胺和大豆分离蛋白(SPI)为原料制备了多孔大豆蛋白复合材料(TPS)并进行表征。研究了TPS对Pb~(2+),Cd~(2+)的微柱分离富集性能。优化实验条件后,TPS对Pb~(2+),Cd~(2+)可实现定量吸附,吸附容量分别为20. 56和25. 13 mg/g,富集系数分别为200,150倍,经过100次吸附和解吸循环后TPS吸附性能未发生改变,准二级动力学方程适合描述材料对Pb~(2+),Cd~(2+)的吸附行为。建立了微柱分离富集-石墨炉原子吸收光谱测定Pb~(2+),Cd~(2+)的新方法,Pb~(2+),Cd~(2+)的检出限分别为0. 2和0. 06 ng/mL,线性范围分别为0. 02~0. 25μg/mL和0. 001~0. 015μg/mL。该方法成功应用于国标样品、鱿鱼和海水中Pb~(2+),Cd~(2+)分析。  相似文献   

6.
采用点击化学的方法将自然界中的天冬氨酸(aspartic acid)键合到硅球上(命名为Click Asp),并将Fe3+配位到Click Asp上,合成固定金属离子亲和色谱(IMAC)材料(Fe3+-Click Asp);采用红外光谱、X射线电子能谱和扫描电镜等表征证明Fe3+-Click Asp成功合成。将此IMAC材料用于蛋白质酶解液和牛奶中的磷酸化肽的富集,实现了磷酸化肽的高选择性富集。本研究为磷酸化蛋白质组学提供了新材料和新方法。  相似文献   

7.
Hu L  Tao WA 《色谱》2011,29(9):869-875
酪氨酸激酶在生物分子的信号转导中起着非常重要的作用,目前除抗体技术外尚无有效的化学方法能够实现对酪氨酸磷酸化蛋白或多肽的选择性富集,然而抗体通常成本较高,而且往往会有模体序列的选择性识别。本文发展了一种基于化学反应的酪氨酸磷酸化肽段的选择性富集,该方法利用了β消除反应只能发生在丝氨酸和苏氨酸磷酸化多肽的特性,以反相选择方法,从而实现对酪氨酸磷酸化肽段的选择性富集。以标准多肽对其反应效率和回收率进行了考察,20分钟内丝氨酸磷酸化多肽的β消除反应效率可达99%以上,而同时酪氨酸磷酸化肽段可保持70%的回收率。进一步以六种标准蛋白混合物的酶解产物对其进行考察,经β消除反应和亲和富集之后,只有酪氨酸磷酸化多肽可以被检测出来,该方法为蛋白质酪氨酸磷酸化的分析提供了一种新的手段。  相似文献   

8.
以N-丙烯酰氧基琥珀酰亚胺为功能单体,制备了含有高活性基团的整体材料基质.以次氨基三乙酸为配体,通过固载Fe3+,发展了一种固定化Fe3+亲和色谱(Fe-IMAC)整体柱的制备方法.该整体柱不仅对磷酸化肽具有很好的选择性,而且富集容量大、回收率高、重现性好.此外,利用该整体柱实现了牛奶蛋白质酶解产物中磷酸化肽段的选择性富集.本实验研制的Fe-IMAC整体柱有望用于磷酸化蛋白质组研究.  相似文献   

9.
采用一步电化学聚合方法将L-赖氨酸和石墨烯聚合到玻碳电极表面上,制备了聚L-赖氨酸/石墨烯修饰电极。采用电化学阻抗及差示脉冲伏安法对修饰电极进行表征。由于电极活性面积的增加及石墨烯导电性,修饰电极对Pb~(2+),Cd~(2+)表现出较好的测试性能。实验表明,在pH 4. 0的乙酸缓冲溶液中,Bi~(2+)质量浓度为0. 6 mg/L,富集电位为-1. 0 V,富集时间为390 s的最佳测定条件下,Pb~(2+),Cd~(2+)浓度在0. 1~5. 0 mmol/L范围内与目标离子的溶出峰电流呈现良好的线性关系,Pb~(2+),Cd~(2+)的检出限分别为7. 0 nmol/L和90 nmol/L。方法已用于实际水样中Pb~(2+),Cd~(2+)的测定。  相似文献   

10.
蛋白质磷酸化是最为广泛的翻译后修饰之一。在生物体液或组织中,许多低丰度的磷酸化蛋白和磷酸化肽是具有高度临床灵敏性和特异性的生物标记物,这些生物分子对许多疾病的检测和病理的阐释可能提供重要的信息。因为蛋白质磷酸化动态可逆且磷酸化蛋白丰度很低,所以很难直接从复杂的生物样品中直接检测到磷酸化蛋白和磷酸化肽。纳米结构材料因其大比表面积、丰富的活性亲合位点和特殊结构,在磷酸化肽和磷酸化蛋白的分离和富集方面已经引起了特别的关注,并成为目前磷酸化蛋白质组学富集和鉴定方面的研究热点。许多介孔、磁性、杂化或化学修饰的亲合材料被研发并用于磷酸化蛋白/多肽的富集与分离;此外,一些多功能纳米结构材料也被研发并用于蛋白质组学中磷酸化蛋白/多肽的快速高效的富集提纯。在这篇综述中,我们专注于纳米结构材料在磷酸化蛋白/多肽富集和提纯方面的最新进展。  相似文献   

11.
A novel strategy for the effective enrichment of phosphopeptides based on magnetic hydro‐xyapatite (HAp) clusters was developed in the current study. The structure of HAp ensures its probable separation capability, including cation exchange with P‐sites (negatively charged pairs of crystal phosphates), calcium coordination, anion exchange with C‐sites (positively charged pairs of crystal calcium ions). The prepared magnetic HAp clusters showed good performance on the efficient enrichment of phosphopeptides from the digestion mixture of β‐casein and BSA. Compared to commercial HAp particles, the magnetic HAp clusters exhibited better selectivity toward phosphopeptides. In addition, the use of magnetic material greatly simplified the enrichment procedure, which avoided the tedious centrifugation steps in a typical phosphopeptides enrichment protocol. Finally, the material was successfully applied in the enrichment of phosphopeptides from human serum. Taken together, the efficient enrichment of the phosphopeptides by the easily prepared magnetic HAp clusters demonstrated a rapid and convenient strategy for the purification of phosphopeptides from complex samples, which may facilitate protein phosphorylation studies.  相似文献   

12.
Selective enrichment of glycopeptides or phosphopeptides with great biological significance is essential for high-throughput mass spectrometry analysis. However, most previously reported methods only focused on enriching either glycopeptides or phosphopeptides rather than enriching them both. In this work, for the first time, a facile route was developed for the synthesis of polyamidoxime polymers with intrinsic hydrophilic skeletons and attractive long chain structure. The polyamidoxime materials (co-PAN) were synthesized from polyacrylonitrile (PAN) precursor and were successfully used for selective enrichment of glycopeptides. After that, co-PAN as a matrix functionalized with titanium ions (co-PAN@Ti4+) could efficiently enrich phosphopeptides. The performances of the polymers for sequential selective and effective enrichment of glycopeptides and phosphopeptides were evaluated with standard peptide mixtures and human serum. Moreover, the efficiency of enrichment of the material was still retained after being used repeatedly. These results demonstrated that the polymers showed great potential in the practical application of proteomics.  相似文献   

13.
This study presented an approach to prepare monodisperse immobilized Ti4+ affinity chromatography (Ti4+-IMAC) microspheres for specific enrichment of phosphopeptides in phosphoproteome analysis. Monodisperse polystyrene seed microspheres with a diameter of ca. 4.8 μm were first prepared by a dispersion polymerization method. Monodisperse microspheres with a diameter of ca. 13 μm were prepared using the seed microspheres by a single-step swelling and polymerization method. Ti4+ ion was immobilized after chemical modification of the microspheres with phosphonate groups. The specificity of the Ti4+-IMAC microspheres to phosphopeptides was demonstrated by selective enrichment of phosphopeptides from mixture of tryptic digests of α-casein and bovine serum albumin (BSA) at molar ratio of 1 to 500 by MALDI-TOF MS analysis. The sensitivity of detection for phosphopeptides determined by MALDI-TOF MS was as low as 5 fmol for standard tryptic digest of β-casein. The Ti4+-IMAC microspheres were compared with commercial Fe3+-IMAC adsorbent and homemade Zr4+-IMAC microspheres for enrichment of phosphopeptides. The phosphopeptides and non-phosphopeptides identified by Fe3+-IMAC, Zr4+-IMAC and Ti4+-IMAC methods were 26, 114, 127 and 181, 11, 11 respectively for the same tryptic digest samples. The results indicated that the Ti4+-IMAC had the best performance for enrichment of phosphopeptides.  相似文献   

14.
In this study, poly(vinylphosphonic acid‐co‐ethylene dimethacrylate), poly(VPA‐co‐EDMA) capillary monolith was synthesized as a starting material for obtaining a stationary phase for microscale enrichment of phosphopeptides. The chelation of active phosphonate groups with Ti (IV) ions gave a macroporous monolithic column with a mean pore size of 5.4 μm. The phosphopeptides from different sources were enriched on Ti (IV)‐attached poly(VPA‐co‐EDMA) monolith using a syringe‐pump. The monolithic capillary columns exhibited highly sensitive/selective enrichment performance with phosphoprotein concentrations as low as 1.0 fmol/mL. Six different phosphopeptides were detected with high intensity by the treatment of β‐casein digest with the concentration of 1.0 fmol/mL, using Ti (IV)@poly(VPA‐co‐EDMA) monolith. Highly selective enrichment of phosphopeptides was also successfully carried out even at trace amounts, in a complex mixture of digested proteins (molar ratio of β‐casein to bovine serum albumin, 1:1500) and three phosphopeptides were successfully detected. Four highly intense signals of phosphopeptides in human serum were also observed with high signal‐to‐noise ratio and a clear background after enrichment with Ti (IV)@poly(VPA‐co‐EDMA) monolith. It was concluded that the capillary microextraction system enabled fast, efficient and robust enrichment of phosphopeptides from microscale complex samples. The whole enrichment process was completed within 20 min, which was shorter than in the previously reported studies.  相似文献   

15.
Li XS  Xu LD  Zhu GT  Yuan BF  Feng YQ 《The Analyst》2012,137(4):959-967
Phosphorylation, one of the most important post-translational modifications of protein, plays a crucial role in a large number of biological processes. Large-scale identification of protein phosphorylation by mass spectrometry is still a challenging task because of the low abundance of phosphopeptides and sub-stoichiometry of phosphorylation. In this work, a novel strategy based on the specific affinity of zirconium arsenate to the phosphate group has been developed for the effective enrichment of phosphopeptides. Zirconium arsenate-modified magnetic nanoparticles (ZrAs-Fe(3)O(4)@SiO(2)) were prepared by covalent immobilization of zirconium arsenate on Fe(3)O(4)@SiO(2) magnetic nanoparticles under mild conditions, and characterized by transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). The prepared ZrAs-Fe(3)O(4)@SiO(2) was applied for the selective enrichment of phosphopeptides from the digestion mixture of phosphoproteins and bovine serum albumin (BSA). Our results demonstrated that the ZrAs-Fe(3)O(4)@SiO(2) magnetic nanoparticles possess higher selectivity for phosphopeptides and better capture capability towards multiply-phosphorylated peptides than commercial zirconium dioxide (ZrO(2)), which has been widely employed for the enrichment of phosphopeptides. In addition, endogenous phosphopeptides from human serum can be effectively captured by ZrAs-Fe(3)O(4)@SiO(2) magnetic nanoparticles. It is the first report, to the best of our knowledge, in which the zirconium arsenate-modified magnetic nanoparticles were successfully applied to the enrichment of phosphopeptides, which offers the potential application of this new material in phosphoproteomics study.  相似文献   

16.
Protein phosphorylation is a common posttranslational modification, and involved in many cellular processes. Like endogenous peptides, endogenous phosphopeptides contain many biomarkers of preclinical screening and disease diagnosis. In this work, titanium-containing magnetic mesoporous silica spheres were synthesized and applied for effective enrichment of peptides from both tryptic digests of standard proteins and human serum. Besides, the enriched peptides can be further separated into nonphosphopeptides and phosphopeptides by a simple elution. First, titanium-containing magnetic mesoporous silica spheres were synthesized by a sol-gel method and found to have high surface area, narrow pore size distribution, and useful magnetic responsivity. Then, as the prepared material was used for selective capturing of phosphopeptides, it demonstrated to have higher selectivity than commercial titanium dioxide. Moreover, via combination of size-exclusion mechanism, hydrophobic interaction, and affinity chromatography, titanium-containing magnetic mesoporous silica spheres were successfully applied to simultaneously extract and separate nonphosphopeptides and phosphopeptides from standard protein digestion and human serum.  相似文献   

17.
Selective detection of phosphopeptides from complex biological samples is a challenging and highly relevant task in many proteomics applications. In this study, a novel phosphopeptide enrichment approach based on the strong interaction of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres with phosphopeptides has been developed. With a well-defined core-shell structure, the Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres not only have a shell of aluminum oxide, giving them a high-trapping capacity for the phosphopeptides, but also have magnetic property that enables easy isolation by positioning an external magnetic field. The prepared Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres have been successfully applied to the enrichment of phosphopeptides from the tryptic digest of standard phosphoproteins beta-casein and ovalbumin. The excellent selectivity of this approach was demonstrated by analyzing phosphopeptides in the digest mixture of beta-casein and bovine serum albumin with molar ratio of 1:50 as well as tryptic digest product of casein and five protein mixtures. The results also proved a stronger selective ability of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres over Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC (immobilized metal affinity chromatography) resin, and TiO(2) beads. Finally, the Al(2)O(3) coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. These results show that Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres are very good materials for rapid and selective separation and enrichment of phosphopeptides.  相似文献   

18.
A novel approach is proposed to synthesize Fe(3)O(4)@TiO(2) microspheres with a well-defined core-shell structure, and the synthesized Fe(3)O(4)@TiO(2) core-shell microspheres were successfully applied for the simple and fast enrichment of phosphopeptides via direct MALDI-TOF mass spectrometry analysis.  相似文献   

19.
为了在短时间内获得相对含量高的磷酸化肽段,以标准磷酸化蛋白质为模型对强阳离子交换色谱(SCX)分离磷酸化肽段体系的缓冲溶液和梯度设置进行了研究,并用酵母酶切肽段混合物考察了该路线在较复杂的样品中的应用。实验结果表明优化后的体系能够在30 min内分离出磷酸肽段,而且非磷酸化肽段的干扰很少,这样便相对提高了磷酸化肽段在质谱仪中的响应强度,重要的是该体系可以对复杂样品进行很好的分离。这说明SCX用于规模化磷酸化肽段富集的策略是可行的。本研究为磷酸化蛋白质组学规模化分析提供了实用技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号