首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of tetraphosphorus trichalcogenides P4X3 (X=S, Se) with the electronically and coordinatively unsaturated 16 electron systems [(EP3)Rh]+ [E=N, NP3=tris(2-diphenylphosphanylethyl)amine, (1); E=P, PP3=tris(2-diphenylphosphanylethyl)phosphane, (2)] in tetrahydrofuran affords new tetraphosphorus trichalcogenide derivatives of formula [(EP3)Rh(P4X3)]CF3 SO3 [E=N; X=Se (3), S (5). E=P; X=Se (4), S (6)]. In the P4Se3 derivatives 3 and 4 the heptatomic cage is bound to the metal through the apical phosphorus atom. The P4S3 derivatives 5 and 6 are obtained as pairs of coordination isomers, with the cage linked to the metal either through the apical or through one of the basal P atoms; the former isomer is predominant and its amount depends on the nature of the trans-disposed apical donor (N or P) of the tripodal ligand. The monometal species [(NP3)Rh(η1-P4S3)]CF3SO3 (5) reacts with 1 affording the dimetal compound [{(NP3)Rh}2(μ,η1:1-Papical,-Pbasal-P4S3)](CF3SO3)2, where the cage exhibits both modes of bonding. All of the compounds have been characterized by 31P NMR spectra and elemental analyses.  相似文献   

2.
The 16-electron fragment [(NP3)Rh]+ inserts into the sp2 CH bond of ethyl formate to give the octahedral complex cation [(NP3)Rh(H)(CO2Et)]+ which can be isolated in the solid state as SO3CF3 salt. Thermal decomposition of the cis-hy-dride(ethoxycarbonyl) complex in benzene gives EtOH and the carbonyl [(NP3)RhCO](SO3CF3) (NP3 = N(CH2CH2PPh2)3).  相似文献   

3.
The syntheses of [Rh(diol)(formamidine)]2 complexes (diol  cycloocta-1,5-diene (1); diol  norbornadiene (2); formamidine  N,N′-di-p-tolylformamidine) are reported. These complexes are dimeric and contain the bridging formamidino ligand. They react with CO, dppe and PPh3 with displacement of the diene ligand to yield the known [Rh(CO)2(formamidine)]2, [Rh(dppe)2]+ and [Rh(PPh3)2(formamidine)], respectively; the last complex, in which the formamidine acts as a chelating ligand, was isolated only as the O2 adduct. With HCl or HBF4 aqueous 1 and 2 do not form hydrides but instead the formamidino cation [p-tolyl-NHCHNHtolyl-p]+ and the complexes [Rh(diol)X]2 (X  Cl, F); a possible scheme for the reaction with HCl is proposed. The [Rh(C8H12)(formamidine)]2 complex reacts with heterocumulenes as CS2, SO2, PhNCS and PhNCO with diene displacement; the only product isolated was [Rh(CS2)2(formamidine], to which a polymeric structure is assigned.  相似文献   

4.
Oxidative addition of HBF4, CF3SO3H and C4F9SO3H to trans-(Ph3P)2Ir(L)Cl (L = CO, N2) gives the highly reactive irridium(III) complexes (Ph3P)2Ir(L)(Cl)(H)(X) (X = BF4, CF3SO3, C4F9SO3), in which the anion X can be easily substituted by σ- and π-donors. In the dinitrogen complex (Ph3P)2Ir(N2)(Cl)(H)(FBF3) (2a) both the N2 and BF4 ligands are replaced by valinate, diethyldithiocarbamate or tertiary phosphines, respectively. 2a catalyzes the hydrogenation of cyclohexene and the isomerisation of 1,5-cyclooctadiene.  相似文献   

5.
The replacement of the iodide ligands in the complex [PtI2(dpa)] (1) (dpa is 2,2′-dipyridylamine) by silver triflate in acetonitrile afforded the compound [Pt(dpa)(MeCN)2](SO3CF3)2 (2). Homoleptic complexes [Pt(dpa)2](X)2 (3·(X)2) were synthesized by the treatment of [PtI2(dpa)] (1) with 2,2′-dipyridylamine in the presence of silver salts AgX in methanol (X = NO3) or acetonitrile (X = SO3CF3). The deprotonation of the complex [3](SO3CF3)2 to give the homoleptic complex [Pt(dpa-H)2] (4) was performed by two methods, e.g., by the treatment of [3](SO3CF3)2 with 2 equiv. of NaOH in methanol or by the addition of excess Et3N to a suspension of [3](SO3CF3)2 in methanol. The structures of compounds 1–4 were established by elemental analyses, high resolution electrospray ionization mass spectrometry, IR and NMR spectroscopy; the crystal structure of complexes [2](SO3CF3)2, [3](NO3)2·H2O, [3](SO3CF3)2·2H2O, and 4 were determined by single-crystal X-ray diffraction.  相似文献   

6.
Reactions of [(η5-R)Rh(CO)2] (R = cp, ind) with water-soluble phosphines (L = 1,3,5-triaza-7-phosphaadamantane and tris(2-cyanoethyl)phosphine) give the new rhodium(I) complexes of the types [Rh(η5-cp)(CO)(PTA)] (1), [Rh(η5-cp)(CO)(P(CH2CH2CN)3)] (2), [Rh(η5-ind)(CO)(PTA)] (3) and [Rh(η5-ind)(CO)(P(CH2CH2CN)3)] (4) in isolated yields of 52-75%. All these compounds have been fully characterized by IR, 1H, 31P{1H} and 13C{1H} NMR, FAB-MS spectroscopies and elemental analyses. Reactivity for the substitution of phosphine is greater for [(η5-ind)Rh(CO)(L)] comparing to [(η5-cp)Rh(CO)(L)] because of a flexibility of the indenyl ligand to undergo facile η5-η3 coordinative isomerizations. The obtained complexes are active catalyst precursors for the dehydrogenation of propan-2-ol, octane and cyclooctane under photoassisted conditions without any organic hydrogen transfer acceptors, giving TOFs of 26-56 using 3 as precatalyst.  相似文献   

7.
5-C5Me5)(CO)2(PPh3)MoCHO (2) one of the few isolated neutral metal formyls, reacts with the electrophilic reagents (CF3COOH and CH3SO3F without disproportionation to give the secondary carbene complexes [(η5-C5Me5)(CO)2(PPh3)Mo(CHOE)]+ X (E = H, X = CF3COO (4); E = Me, X = PF6 (5)).  相似文献   

8.
The reaction of [Cp(CO)(dppm)Fe]BF4 (1a) with the phosphorus ylide Me3PCH2 yields the novel bis(phosphino)methanideiron complex Cp(CO)Fe(Ph2PCHPPh2) (2), which upon photolysis in the presnece of Me3P is converted into Cp(Me3P)Fe(Ph2PCHPPh2 (3). Reaction of 2 with MeOSO2CF3 gives a mixture of the iron salts [(Cp(CO)Fe(Ph2PCR(R′)PPh2)]CF3SO3 (R = R′ = H (1b), R = R′ = Me (6) and R = H, R′ = Me (syn/anti-4)).  相似文献   

9.
Eight diorganotin esters of salicylidene-L-tryptophan(Sal-T) and salicylidene-L-valine(Sal-V), [(n-Bu)2Sn(Sal-T)] (1), [(n-Bu)2Sn(Sal-V)] (2), [Ph2Sn(Sal-T)] (3), [Ph2Sn(Sal-V)] (4), [(PhCH2)2Sn(Sal-T)] (5), [(PhCH2)2Sn(Sal-V)] (6), [(4-ClC6H4CH2)2Sn(Sal-T)] (7) and [(4-ClC6H4CH2)2Sn(Sal-V)] (8) have been synthesized and characterized by elemental analysis, IR and 1H NMR. The crystal structures of compounds 1 and 2 have been determined by X-ray single crystal diffraction. Their structures show the tin atoms of two compounds are rendered five-coordinated in distorted trigonal bipyramidal geometries.  相似文献   

10.
The electric dipole moments of the diaryl diselenides (RC6H4)2Se2 (R  H, 4-F, 4-Br, 4-CH3, 3-F) were measured in benzene solution at 25 and 45°C. The conformations of these compounds were deduced by matching experimental moments with values calculated for a variety of possible conformations. In the dissolved state the diselenides exist at 25°C in fixed “skew” conformations characterized by dihedral angles of 75–106° between the CSeSe planes, corresponding to the conformational energy minima. At 45°C oscillations about the SeSe bonds are excited in the diphenyl and bis(4-methylphenyl) diselenides, whereas the 4-bromophenyl derivative exhibits free rotation. The fluoro compounds have temperature-independent dipole moments, suggesting “rigid conformations” with dihedral angles of 106° (4-F) and 74.4° (3-F). An analysis of the dipole moments at 25 and 45°C obtained for the compounds (RC6H4)2X2 (R  H, 3-F, 4-F, 4-Br, 4-CH3; X  S, Se, Te) showed that the conformational properties of these derivatives change on passing from X  S to X  Te. The observed variations are explicable in terms of a decreasing repulsion between the lone electron pairs of the chalcogen atoms on going from the disulfides to the ditellurides and a concomitant reduction of the energy barrier to rotations about the XX bonds.  相似文献   

11.
The preparation of novel Rh (I) and Ir (I) complexes, i.e. [Rh(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD)]+[PF6] (1), Rh(CF3SO3)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (2) and Ir(CF3CO2)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (3) (COD = 1,5-cyclooctadiene), is described. Compounds 1 and 3 were structurally characterized by X-ray diffraction. In 1, the N-heterocyclic carbene acts as a bidentate ligand with the carbene coordinating to the Rh(I) center and an arene group acting as a homoazallyl ligand. The catalytic activity of complexes 13 in the polymerization of phenylacetylene was studied and compared to that of RhCl(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (4), Rh(CF3COO)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (5), [Rh(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD)]+[BF4] (6), IrCl(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (7), IrCl(1,3-diisopropyl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (8), IrBr(1,3-di-2-propylimidazolin-2-ylidene)(COD) (9), RuCl2(PCy3)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH–C6H5) (10), RuCl2(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH-2-(2-PrO)-5-NO2-C6H3) (11), Ru(CO2CF3)2(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH-2-(2-PrO)-5-NO2-C6H3) (12). Compounds 16 were active in the polymerization of phenylacetylene. cis-Poly(phenylacetylene) (PPA) was obtained with the rhodium-based catalysts 1, 2, 46, trans-PPA was obtained with the Ir-based catalysts 3 and 8. In addition, compounds 1 and 6 were found to produce highly stereoregular PPA with a cis-content of 100% in the presence of water. Finally, the Ru-based metathesis initiator 12 allowed for the synthesis of trans-PPA, representing the first example of a ruthenium complex being active in the polymerization of a terminal alkyne.  相似文献   

12.
The interaction of silver triflate (OTf=SO3(CF3)) and dppf [(C5H4PPh2)2Fe)] gave different complexes, depending on the stoichiometric proportions and reaction conditions. Under limiting dppf conditions, three different forms (1-3) of [Ag2(OTf)2(dppf)]x were isolated. Single crystal X-ray diffraction analyses showed that the structure of 1 (x=2n) consists of a 2-D polymer comprising a tetra-silver basic unit, while that of 2 (x=2) possesses a discrete tetra-silver framework and that of 3 (x=n) is a linear polymer based on a di-silver repeating unit. The structures are supported by bridging dppf ligands and triflate groups. The crystal lattices of the compounds are stabilized by extensive intermolecular C-H?X hydrogen bonding (H=ring proton of Cp or Ph of dppf; X=O or F of OTf). [Ag(dppf)(OTf)] (4) and the structurally characterized mononuclear [Ag(dppf)2](OTf) (5) were the sole products obtained from treatment of AgOTf with dppf in molar ratios of 1:1 and 1:2, respectively.  相似文献   

13.
μ-Oxo-bis(triorganoantimony- and -bismuthsulfonates) (R3MO3Sr′)2O[M  Sb, R  Ph, benzyl, M  Bi, R  Ph; R′  Me, CH2CH2OH, CF3, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] and (Me3SbO3SR′)2O · nH2O (n  2, R′  CF3, Ph, 4-CH3C6H4; n  0, R′  CH3, CH2CH2OH) have been prepared by reaction of (Ph3SbO)2 and Me3Sb(OH)2, respectively, with appropriate sulfonic acids or with (R3MX)2O (R  Ph, benzyl; X  Br) and R′SO3H in the presence of Ag2O. The anhydrous compounds (Me3SbO3SR′)2O are obtained by heating the hydrates. Me3Sb(OH)2 and 2,4-(NO2)2C6H3SO3H react to give the hydroxosulfonate Me3Sb(OH)O3SR′. CH3OH solvolyzes the products. A covalent structure, with pentacoordinated Sb or Bi atoms, unidentate O3SR′ ligands and μ-oxygen in apical, and R in equatorial positions, is inferred from the vibrational data for all nonhydrated sulfonate compounds. A correlation between νas(SbOSb) vibration and SbOSb bond angles in hexaphenyl distiboxans was established, which indicates that the SbOSb bridges are linear in (Ph3SbO3SR′)2O (R′  2,4-(NO2)2C6H3, 2,4,6-(NO2)3C6H2) and bent in the other compounds. Data also indicate that there is a linear BiOBi bridge in (Ph3BiO3SCH2CH2OH)2O. The hydrated compounds have a distinctly different ionic structure one H2O being coordinated apically to each of the pentacoordinated Sb atoms in the cation [(Me2SbOH2)2O]2+. This proposal is verified by the crystal structure determination of (Me3SbO3SPh)2O · 2H2O which revealed an ionic structure: [(Me3SbOH2)2O](O3SPh)2. The angles μ-OSbO(H2O) of 171.7(2) and 171.0(2)° and μ-OSbC(CH3) of 98.3° (mean) reflect the distortion of the trigonal bipyramidal surrounding of the Sb atoms, and the long SbO(H2O) distance of 244.4(5) pm (mean) the rather weak bonding of the water molecules to Sb. The distances S [144.6(6) pm (mean)] and the angles OSO [112.6(4)° (mean)] in the sulfonate anion are essentially identical. Hydrogen bonds exist between the water ligands and O atoms of the anions.  相似文献   

14.
The preparation and properties are described of trans-[(Ph3P)2(CO)M(RNSNR)] [ClO4] (M  RhI, IrI; R  Me, Et, i-Pr, t-Bu) and of cis- or trans-[L2Pt(RNSNR)X] [ClO4] (X  Cl?, L  Et2S, PhMe2As, PhMe2P, R  Me, t-Bu; X  CH3, L  PhMe2P, R  Me).1H and 13C NMR data show the existence of various isomers in solution which may interconvert via intra- and inter-molecular exchange processes. A general reaction scheme for the intramolecular exchange processes is discussed.  相似文献   

15.
The rates of methanolysis of the iodides TsiSiH(C6H4Y-p)I (Y  MeO, Me, H, Cl, or CF3) in 1/1 v/v MeOH/dioxane have been shown to be increased by electron withdrawal by Y and correspondingly decreased by electron release. This is taken to imply that the methanol is covalently involved in the transition state, and thus that, contrary to an earlier suggestion, the reaction cannot have an SN2(intermediate) mechanism. No explanation can at present be offered for the fact that methanolysis of TsiSiHPhI (like that of TsiSiMe2X with X  I, OClO3, or OSO2CF3) is not accelerated by NaOMe whereas that of some other TsiSiHPhX compounds (e.g. X  Br, ONO2, or OSO2Me) is so accelerated, with its implications of a duality of mechanism within an SN2 range. The reactions of the iodides TsiSiH(C6H4Y-p)I with KSCN in MeCN are also accelerated by electron withdrawal by Y, whereas those with AgOAc in MeCO2H are accelerated by electron release.  相似文献   

16.
The dinuclear compounds [C5Me5Rh(μ-PMe2)]2 (II) and [(C5Me5Rh)2(μ-PPh2(μ-X)] (X = PPh2 (III); X = Cl (IV); X = SMe (V)) react with CF3CO2H/NH4PF6 which protonates the metal-metal bond to give the complexes [(C5Me5Rh)2(μ-PMe2)2(μ-H)]PF6 (VI) and [(C5Me5Rh)2(μ-PPh2)(μ-X)(μ-H)]PF6 (VII–IX), respectively. The compound [C5Me5(CH3)Rh(μ-PMe2)2Rh(I)C5Me5] (X) is formed from II and methyl iodide. The reactions of VI with L = PMe3, PMe2H, P(OMe)3 and CNBut, by opening of the hydride bridge give the compounds [C5Me5(H)Rh(μ-PMe2)2Rh(L)C5Me5]PF6 (XI–XIV). In contrast, treatment of VI with CNMe and CNPh leads to insertion of the isocyanide into the (RhHRh) bond and to the formation of the μ-formimidoyl complexes [(C5Me5Rh)2(μ-PMe2)2(μ-HCNR)]PF6 (XV, XVI).  相似文献   

17.
The thiophosphinous acid coordinated to ruthenium through the phosphorus atom in [CpRu(PPh3)2(PH2SH)]CF3SO3 (1) is deprotonated in the presence of proton sponge to yield the neutral compound [CpRu(PPh3)2(PH2S)] (2), where the thiophosphinite, PH2S, anion remains bound to the metal through the phosphorus atom. The parent complex 1 is easily restored in the presence of a weak acid. The sulfur of the coordinated anion may be alkylated with CF3SO3Me to yield [CpRu(PPh3)2(PH2SCH3)]CF3SO3 (3), the methyl thioester of the acid being bound to ruthenium through the phosphorus. The new compounds have been characterized by elemental analyses, IR and multinuclear NMR spectroscopy. The crystal structure of 2 · CH3CN has been determined by X-ray diffraction methods.  相似文献   

18.
《Tetrahedron: Asymmetry》2000,11(13):2765-2779
The ligands 6-[(diphenylphosphanyl)methoxy]-4,8-di-tert-butyl-2,10-dimethoxy-5,7-dioxa-6-phosphadibenzo[a,c]cycloheptene, 1, (S)-4-[(diphenylphosphanyl)methoxy]-3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4a′]dinaphthalene, (S)-2, and (S)-4-[(diphenylphosphanyl)methoxy]-2,6-bis-trimethylsilanyl-3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a′]dinaphthalene, (S)-3, (S)-2-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a′]dinaphthalen-4-yloxymethyl)pyridine, (S)-4, and (S)-2-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a′]dinaphthalen-4-yloxy)pyridine, (S)-5, have been easily prepared.The cationic complexes [Pd(η3-C3H5)(L-L′)]CF3SO3 (L–L′=1–(S)-5) and [Pd(η3-PhCHCHCHPh)(L–L′)]CF3SO3 (L–L′=(S)-2–(S)-4) were synthesized by conventional methods starting from the complexes [Pd(η3-C3H5)Cl]2 and [Pd(η3-PhCHCHCHPh)Cl]2, respectively. The behavior in solution of all the π-allyl- and π-phenylallyl-(L–L′)palladium derivatives 614 was studied by 1H, 31P{1H}, 13C{1H} NMR and 2D-NOESY spectroscopy. As concerns the ligands (S)-4 and (S)-5, a satisfactory analysis of the structures in solution was possible only for palladium–allyl complexes [Pd(η3-C3H5)((S)-4)]CF3SO3, 11, and [Pd(η3-C3H5)((S)-5)]CF3SO3, 12, since the corresponding species [Pd(η3-PhCHCHCHPh)((S)-4)]CF3SO3, 13, and [Pd(η3-PhCHCHCHPh)((S)-5)]CF3SO3, 14, revealed low stability in solution for a long time. The new ligands (S)-2–(S)-5 were tested in the palladium-catalyzed enantioselective substitution of (1,3-diphenyl-1,2-propenyl)acetate by dimethylmalonate. The precatalyst [Pd(η3-C3H5)((S)-2)]CF3SO3 afforded the allyl substituted product in good yield (95%) and acceptable enantioselectivities (71% e.e. in the S form). A similar result was achieved with the precatalyst [Pd(η3-C3H5)((S)-3)]CF3SO3. The nucleophilic attack of the malonate occurred preferentially at allylic carbon far from the binaphthalene moiety, namely trans to the phosphite group. When the complexes containing ligands (S)-4 and (S)-5 were used as precatalysts, the product was obtained as a racemic mixture in high yield. The number of the configurational isomers of the Pd-allyl intermediates present in solution in the allylic alkylation and the relative concentrations are considered a determining factor for the enantioselectivity of the process.  相似文献   

19.
Reaction of verdoheme, [(OEOP)FeII(py)2]Cl, where OEOP is the monoanion of octaethyloxoporphyrin, with HX (X = F, CF3CO2, CF3SO3) has been studied in the presence of air, producing six-coordinate iron(III) product, [OEOPFeIIIX2] (X = F (2), CF3CO2 (3)) or five-coordinate iron(II) oxoporphyrin compound, [OEOPFeII(CF3SO3)] (4). Compounds 2, 3 and 4 have been isolated and characterized by spectroscopic methods. 1H NMR spectroscopy and magnetic measurements reveal that [OEOPFeIIIX2] (X = F and CF3CO2) are paramagnetic (S = 5/2) and [OEOPFeII(CF3SO3)] (4) is also paramagnetic (S = 2).  相似文献   

20.
The treatment of the hexacarbonylmetal compounds M(CO)6 (M = Cr. Mo, W) with two equivalents Me3PCH2 yields the phosphonium acylmetalphosphorus ylides Me4P[(CO)5MC(O)CHPMe3] 1a–1c. Their reaction with Me3SiOSO2CF3 leads via O-silylation to formation of the neutral “siloxy(ylidecarbene) complexes” (CO)5MC(OSiMe3)CHPMe32a–2c, which are protonated by HX (X = Cl, CF3SO3) to give the thermolabile carbene complexes [(CO)5MC(OSiMe3)H2CPMe3]X, 3a, 3b. 1H, 13C NMR and IR data suggest, that delocalization of the ylidic charge to the carbene carbon generates a metal-coordinated vinyl group in the case of 2a–2c. In addition this fact is proved by the X-ray analysis of 2c, for which a C(ylide)C(carbene) bond distance of 133 pm is found. 2a–2c are obtained as pure E-isomers but can be converted to the Z-isomers 2a′–2c′ upon photolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号