首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new mixed PtRh cluster trianion [Pt2Rh9(CO)22]3? has been isolated as a minor product of the pyrolysis of [PtRh5(CO)15]?, and has been characterized by X-ray diffraction. The metal skeleton, which has ideal D3h symmetry, consists of three face-to-face condensed octahedra, as previously found in the isoelectronic species [Rh11CO)23]3?, with the Pt atoms on the three-fold axis, in the positions of maximum MM connectivity.  相似文献   

2.
Microcalorimetric measurements at elevated temperatures of the heats of thermal decomposition and of iodination of a number of [M(CO)nL6-n] complexes (M = Cr, Mo, W; n = 3, 4; L = py, MeCN) have led to values for the standard enthalpies of formation of the following crystalline compounds (values given in kJ mol?) at 25°C: fac-[Mo(CO)3py3](275 ± 12), fac-[Mo(CO)3(NCCH3)3]  (410 ± 12), fac-[W(CO)3py3](250 ± 12), fac-[W(CO)3(NCCH3)3](405 ± 12) and cis-[Cr(CO)4py2](505 ± 20). From these and other data, including estimated heats of sublimation, the bond enthalpy contributions of the various metalligand bonds in the gaseous metal complexes were evaluated as follows (values in kJ mol?): D(Crpy) 102, D(Mopy) 146, DWPy) 173, D(Mo7z.sbnd;NCMe) 135 and D(WNCMe) 169. For a given metal the bond enthalpy contribution decreased in the order D(MCO) > D(Mpy) > D(Mz.sbnd;NCMe). This order is related to the σ- and π-bonding character of the ligand.  相似文献   

3.
The use of ferricenium cations [(C5H5)2FE]X (X = BF4, PF6, SbF6) as one-electron oxidizing agents for organometallic complexes is demonstrated. Sandwich compounds M(C5H5)2 (M = Cr, Co, Ni) and Cr(C6H6)2 are oxidized in nearly quantitative yield to the corresponding cations [M(C5H5)2]BF4 and [(C6H6)2Cr]BF4. The metalmetal bond in the dinuclear organometallic complexes [DienylM(CO)n]2 (M = Mo (n = 3), Fe (n = 2), Ni (n = 1)) and Co2(CO)8 is fissioned by (C5H5)2Fe+ in the presence of neutral ligands L to form the corresponding cationic compounds [DienylM(CO)nLm]X (M = Mo (n = 2), Fe (n = 2), Ni (n = 0)) and [Co(CO)3L2BF4 (L = VB and VIB donor ligands) in high yields.The practical applications of ferricenium cations are discussed in comparison with other methods for the preparation of cationic organometallic complexes.  相似文献   

4.
Syntheses of the copper and gold complexes [Cu{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] containing the homoleptic carbonyl cations [M{Fe(CO)5}2]+ (M=Cu, Au) are reported. Structural data of the rare, trimetallic Cu2Fe, Ag2Fe and Au2Fe complexes [Cu{Fe(CO)5}2][SbF6], [Ag{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] are also given. The silver and gold cations [M{Fe(CO)5}2]+ (M=Ag, Au) possess a nearly linear Fe-M-Fe’ moiety but the Fe-Cu-Fe’ in [Cu{Fe(CO)5}2][SbF6] exhibits a significant bending angle of 147° due to the strong interaction with the [SbF6] anion. The Fe(CO)5 ligands adopt a distorted square-pyramidal geometry in the cations [M{Fe(CO)5}2]+, with the basal CO groups inclined towards M. The geometry optimization with DFT methods of the cations [M{Fe(CO)5}2]+ (M=Cu, Ag, Au) gives equilibrium structures with linear Fe-M-Fe’ fragments and D2 symmetry for the copper and silver cations and D4d symmetry for the gold cation. There is nearly free rotation of the Fe(CO)5 ligands around the Fe-M-Fe’ axis. The calculated bond dissociation energies for the loss of both Fe(CO)5 ligands from the cations [M{Fe(CO)5}2]+ show the order M=Au (De=137.2 kcal mol−1)>Cu (De=109.0 kcal mol−1)>Ag (De=92.4 kcal mol−1). The QTAIM analysis shows bond paths and bond critical points for the M−Fe linkage but not between M and the CO ligands. The EDA-NOCV calculations suggest that the [Fe(CO)5]→M+←[Fe(CO)5] donation is significantly stronger than the [Fe(CO)5]←M+→[Fe(CO)5] backdonation. Inspection of the pairwise orbital interactions identifies four contributions for the charge donation of the Fe(CO)5 ligands into the vacant (n)s and (n)p AOs of M+ and five components for the backdonation from the occupied (n-1)d AOs of M+ into vacant ligand orbitals.  相似文献   

5.
《Polyhedron》2002,21(5-6):535-542
In analogy to the corresponding Cp*Al- and Cp*Ga-compounds two further bis(phosphine)platinum complexes [(dcpe)Pt(InCp*)2] (1(In)) and {(dcpe)Pt[GaC(SiMe3)3]2} (2(Ga)) containing monovalent Group 13 metal species as ligands are accessible by thermal activation of [(dcpe)Pt(H)(CH2t-Bu)] (dcpe=bis(dicyclohexylphosphino)ethane) followed by the reaction with 2 equiv. of InCp* (Cp*=pentamethylcyclopentadienyl) or GaC(SiMe3)3. The crystal structure analysis reveals a distorted tetrahedral coordination of the platinum center for both compounds. The PtIn distances in 1(In) amount to 2.569(1) and 2.556(1) Å. The PtGa distances in 2(Ga) are exceptionally short and amount to 2.315(1) and 2.318(1) Å. Comparative theoretical investigations have been performed on this type of complexes and allow a deeper insight in the bonding situation. The NBO analysis reveals a significantly larger Pt→Ga π-back-donation for the model compound {(dhpe)Pt[GaC(SiH3)3]2} (2M(Ga)) (0.44 e; dhpe=1,2-diphosphinoethane) in comparison with the related model compound [(dhpe)Pt(GaCp)2] (1M(Ga)) (0.29 e) bearing a strong π-donating organic ligand at the Ga center. A similar trend is observed for the PtGa bond dissociation energies (De=33.0 kcal mol−1 for 2M(Ga), De=18.3 kcal mol−1 for 1M(Ga)). For the model compound [(dhpe)Pt(InCp)2] (1M(In)) a value of De=19.1 kcal mol−1 has been calculated.  相似文献   

6.
The sole and unexpected products from the reactions of a variety of lead (II) and lead (IV) compounds with [Co2(CO)6(L)2] complexes (L = tertiary arsine, phosphine, or phosphite) in refluxing benzene solution are the blue, air-stable percobaltoplumbanes [Pb{Co(CO)3(L)}4]. These have also been obtained from the reaction of Na[Co(CO)3(L)] (L  PBu3n) with lead (II) acetate which with Na[Fe(CO)2(NO)(L)] forms the isoelectronic [Pb{Fe(CO)2(NO)(L)}4] [L  P(OPh)3]. The IR spectra of the complexes in the v(CO) and v(NO) regions are consistent with tetrahedral PbCo4 or PbFe4 fragments, trigonal bipyramidal coordination about the cobalt or iron atoms and linear PbCoAs, PbCoP, or PbFeP systems. Unlike [Pb{Co(CO)4}4], our complexes do not dissociate to [Co(CO)3(L)]? or [Fe(CO)2(NO)(L)]? ions when dissolved in donor solvents.  相似文献   

7.
[C5H5Fe(CO)2thf]+ reacts with the ligands LL and LLL to give the cations [C5H5Fe(CO)2LL]+ (LL = RS(CH2)nSR, 1,4-dithiane) and [C5H5Fe(CO)2LLL]+ (LLL = 1,3,5-trithiane, tris(methylmercapto)methane) containing monodentate coordinated sulfur ligands. In a similar way, sulfur ligand bridged dinuclear dications [(C5H5Fe(CO)2)2(μ-LL)]2+ and [(C5H5Fe(CO)2(μ-LLL)]2+ and tri-nuclear trications [(C5H5Fe(CO)2)3(μ-LLL)]3+ are formed. Irradiation of the mononuclear cations gives the chelate complexes [C5H5Fe(CO)(η2-LL)]+.  相似文献   

8.
A synthesis of potassium monothiooxalate, K2C2SO3, and its reactions with metal ions are reported. The spectroscopic properties of the complexes, M(C2SO3)nn, for M  Ni(II), Cu(II), Zn(II) (n = 2); and M  Cr(III), Co(III), Fe(III) (n = 3) are indicative of (SO) chelated ligands while the Al(III) (n = 3) complex is an (OO) bonded chelate. The copper(II) complex undergoes an irreversible oxidation at 0.43 V. This oxidation is accompanied by reduction of the copper(II) and evolution of CO2 and SCO.The inert cations which accompany the anionic monothiooxalate complexes are readily replaced by the coordinatively unsaturated (Ph3P)2M+, M  Ag(I), Cu(I) complex cations. The bridging of the monothiooxalate ligand in the resulting polynuclear complexes is of the type MOOC2SOM′, M  Al(III), Fe(III), M′  Ag(I), Cu(I); M  Cr(III), M′  Cu(I) and MSOC2O2M′, M  Cr(III), Co(III), M′  Cu(I).  相似文献   

9.
An X-ray crystal structure of [(Et2N)2PFe(CO)4]+, reveals shortening of the PFe and COeq bonds and lengthening of the FeCeq bonds, possibly suggesting that the CO lability of cationic (phosphenium)iron tetracarbonyl complexes is due to the strong π-acceptor character of the phosphenium ligand.  相似文献   

10.
Phosphonium adduct formation via attack of tri-n-butylphosphine on the cations [(C7H7)M(CO)3]+ (M = Cr, Mo, W) obeys the rate law, Rate = k [complex] [PBu3]. The very similar rate constants for the Cr, Mo and W complexes confirm the similar electrophilicities of the tropylium rings in these cations, and also support the view that there is direct addition to the rings. The related complexes [(C6H7)Fe(CO)3]BF4 and [(C6H6)Mn(CO)3]BF4 also form adducts with PBu3, and the quantitative reactivity order [(C6H7)Fe(CO)3]+ > [(C7H7)Cr(CO)3]+ » [(C6H6)Mn(CO)3]+ (160:60:1) has been established.  相似文献   

11.
12.
The configuration of Ni(IV), Fe(IV), Mn(IV) and V(IV) complexes of the type MI2[MIVL2] where MI=Li, Na, K, Rb and Cs and the ligand L is the anion C3H6N3O3−3 of hexahydro-1,3,5-triazine-1,3,5-triol has been obtained by studying the infrared spectra of the complexes in the region 4000-50 cm−1. Vibrational assignments for the observed bands of the complex ions have been made assuming the molecular symmetry D3d. The assignments have been based on the observed isotopic frequency shifts due to the substitutions H/D, 14N/15N, 12C/13C, 58Ni/62Ni and 54Fe/57Fe and on the assignment of the bands in the infrared spectrum of hexahydro-1,3,5-triazine-1,3,5-triol, C3H6N3 (OH)3.  相似文献   

13.
We report the synthesis and characterisation of binuclear η5-pentamethylcyclopentadienylrhenium complexes, [(η5-C5Me5)Re(CO)2]2(μ-E) (E = S (2), Se (3), Te (4)), containing a chalcogen bridge in addition to a ReRe bond. According to the X-ray structural analysis, 3 possesses approximately C2 molecular symmetry; the C5Me5 ring ligands occupy trans positions with respect to the central Re2Se unit [d(ReRe) 3.032(1) Å, ∢ ReSeRe 74.9(1)°]. As expected, the complexes of the now complete series [CpRe(CO)2]2(μ-E) (E = O (1), S (2), Se (3), Te (4)) show a high degree of similarity in their corresponding mass, IR, 1H and 13C NMR spectra.  相似文献   

14.
The synthesis, spectroscopic properties, and X-ray structure of dodecahydrotriphenylene(tricarbonyl)manganese(I) tetrafluoroborate, [(η6-C18H24)Mn(CO)3][BF4] are reported. The cation has approximate C3 symmetry with the MnCO vectors projected across the unbridged CC bonds of the arene ligand.  相似文献   

15.
The i.r. spectra of the complexes M(en)3X2 (M = Mn, Fe, Co, Ni, Cu, Zn), trans-Cu(en)2X2, Ni(en)2X2 and M(en)X2 (M = Ni, Cu, Zn; X = Cl, Br, I) have been studied. Assignments are proposed for the tris(ethylenediamine) complexes on the basis of 15N-, N2D4- and C2D4-labelling of en and the effects of metal ion substitution in relation to our earlier study of [M(en)3]SO4 complexes. Assignments for the bis(ethylenediamine) complexes are based on our observations of halogen-sensitivity and earlier studies on metal isotope labelling and ligand deuteration of the halide complexes and a normal coordinate analysis of the [Cu(en)2]2+ species. The spectra of the halide complexes have been extended below 200 cm−1 for the first time. Finally, the spectra of the mono(ethylenediamine) complexes are discussed in relation to their known or probable structures.  相似文献   

16.
The infrared spectra (500–140 cm?1) of the complexes [M(pyridine)n(NCS)2] (n = 2, M = Mn, Co, Ni, Cu, or Zn; n = 4, M = Mn, Fe, Co, or Ni) are discussed. The v/M-pyridine and v/M-NCS bands are assigned by observing the band shifts induced by isotopic labelling of the coordinated pyridine and isothiocyanate, by comparing the spectra with those of the [M(pyridine)2Cl2] complexes and from symmetry considerations based on their known structures. The two types of metal-ligand stretching bands occur within a rather narrow frequency range and there is evidence of some vibrational coupling between these two modes. Some earlier assignments of vM-pyridine bands require revision. The spectra of the yellow [Fe(py)4(NCS)2] complex and its violet oxidation product suggest that the oxidation reaction involves the transformation of trans-[Fe(py)4(NCS)2] into cis-[Fe(py)3(NCS)3]  相似文献   

17.
When [HFe(CO)4]? is treated first with NaBiO3 and then dilute H2SO4, a complex mixture of neutral metal carbonyl clusters results, some of which can be extracted into petroleum ether. Upon prolonged standing the extract yields a precipitate which has been characterized by X-ray crystallography as Bi2Fe3(CO)9.The complex Bi2Fe3(CO)9 crystallizes in the centrosymmetric orthorhombic space group Cmcm (D2h17; No. 63) with a 10.616(2) Å, b 13.458(3) Å, c 11.347(3) Å, V 1621.1(7) Å3 and Z = 4. Single-crystal X-ray diffraction data (Mo-Kα, 2θ = 4.5–55.0°) were collected on a Syntex P21 four-circle diffractometer and the structure was refined to RF 5.4% and RWF 4.5% for all 1039 independent data (RF 4.5% and RWF 4.5% for those 851 reflections with |F0| > 3.0σ(|F0|)). The molecule lies on a site of crystallographic C2v symmetry and is disordered. The individual molecules have a trigonal bipyramidal Bi2Fe3 core with the bismuth atoms occupying the apical sites (BiFe 2.617(2)–2.643(2) Å, FeFe 2.735(5)–2.757(5) Å). Each iron atom is linked to three terminal carbonyl ligands and the molecule has approximate C3h symmetry. The nine peripheral oxygen atoms are ordered and define a tricapped trigonal prism. The equatorial iron atoms are disordered with the two Fe3 triangles mutually displaced by approximately 30°; the disordered ensemble has approximate D3h symmetry.  相似文献   

18.
The molecular structure of (C5H5)2Co has been determined by gas phase electron diffraction. The best agreement between calculated and experimental intensity curves is obtained with a model with eclipsed C5H5 rings (symmetry D5h), but a model with staggered rings (symmetry D5d) cannot be ruled out. The mean CoC and CC bond distances are 2.119(3) Å and 1.429(2) Å respectively. The average angle between the CH bonds and the C5 ring is 2.1(0.8)°. The value obtained for the CC vibrational amplitude, l(CC) = 0.055(1) Å, is significantly larger than the amplitude calculated from a molecular force field and the corresponding amplitudes in (C5H5)2Fe and (C5H5)2Ni determined by electron diffraction, and confirms the presence of a dynamic Jahn—Teller effect of the magnitude calculated from ESR data. The average structure is compared with those of the metallocenes of the other first row transition elements.  相似文献   

19.
Oxidative cleavage of the FeFe bond in [C5H5Fe(CO)2]2 in the presence of alkylide-bridged diphosphanes LL (LL = (C6H5)2P(CH2)n(P(C6H5)2; n = 1–3), (C6H5)2PCH2As(C6H5)2 and dichalcogenodiphosphoranes (X)LL(X) ((X)LL(X) = (C6H5)2P(X)(CH2)n(X)P(C6H5)2; X  O, S, Se; n = 1–3) yields the complexes [C5H5Fe(CO)2L′]BF4 (L′ = LL, (X)LL(X); X  S, Se) in high yield. the complexes react with Ni(CO)4 under photochemical conditions to form [C5H5Fe(CO)2(μ-L′)Ni(CO)3]BF4 in quantitative yield, and lose a CO group under irradiation (λmax > 300 nm) to form the chelate compounds [C5H5Fe(CO)L′]BF4, which are isolable for L′  LL (P,As ligand) and (X)LL(X) (X = S, Se). Some substitution reactions with phosphanes are described.  相似文献   

20.
The complexes [(η5-C5H5)M(CO)nPbPh3] (M = Fe, Cr, Mo, W) have been studied with respect to their thermal and photochemical stability and their reactivity with respect to SO2. The iron complex is the only complex that exhibits the ability to decompose via a 1,2-phenyl migration to the transition metal under thermal conditions, but photochemically the tungsten complex also exhibits this behaviour. All complexes react readily with SO2 to yield the corresponding sulphinatophenyl complexes, LMSO2Ph, in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号