首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The protonated species [Fe2(η-C5H5)2(CO)2(η-CO){μ-CN(Me)H}]X, [Fe2(η-C5H5)2(CO)(CNMe)(μ-CO){μ-CN(Me)H}][X], and [Fe2(η-C5H5)2(CO)2{η-CN(Me)H}2][X]2 react with one equivalent of AgY. The Ag+ and one H+ act together as a two-electron oxidant. Silver metal is precipitated quantitatively and the substrates cleaved to give mono-nuclear products of the type (a) [Fe(η-C5H5)(CO)(L)X] and [Fe(η-C5H5(CO)(L)Y] or (b) Fe(η-C5H5(CO)(L)(CNMe)][X] (L = CO, CNMe). If X and Y are both coordinating anions such as NO3, I, or Br or the solvent is MeCN products of type (a) are usually obtained with X = Y = MeCN+ if acetonitrile is used as the solvent. However, if either X or Y is a non-coordinating anion such as BF4 or PF6 and methanol is the solvent, the products are usually those of type (b). When X = [p-MeC6H4SO3], both types of products are obtained in significant amounts. If two equivalents of Ph3P are added to the methanol solution of [Fe2(η-C5H5)2(CO)2{-CN(Me)H}2[BF6]2, no reaction takes place until the third equivalent of AgNO3 has been added. The products have been isolated and characterized by analysis and infrared spectroscopy. The previously unreported [Fe2(η-C5H5)2(CO)(CNMe)(η-CO){η-CN(Me)H}] X salts are described for X = BF4, PF6, Br · 2H2O, I · H2O, NO3 · 0.5H2O, and p-MeC6H4SO3.  相似文献   

3.
《Tetrahedron letters》1987,28(14):1497-1500
4-Isoprene)Fe(CO)3 can be deprotonated with lithium diisopropylamide. The resulting coordinated isoprene anion reacts with electrophiles at low temperature, but rearranges to an isomeric (η4-trimethylenemethane)Fe(CO)3 anion derivative at higher temperatures.  相似文献   

4.
Cp2Cr2(CO)4( - 2 - P2), 1, reacts with one molar equivalent of Fe2(CO)9 in THF to yield the mono- and di-iron complexes, Cp2Cr2(CO)4P2[Fe(CO)4], 2, (16.5% yield) and Cp2Cr2(CO)4P2[Fe(CO)4]2, 3, (16.9% yield), as dark magenta brown and dark greenish brown crystals, respectively. Both complexes were characterized by single-crystal X-ray diffraction analysis. Crystal data –2: space group =P21/c,a=17.024(1) Å,b=8.180(1) Å,c=30.891(2) Å, =100.953(5)°,V=4223.4(7)Å3,Z=8, 3743 observed reflections,R F=0.033; 3: space group P1,a=10.209(2) Å,b=10.212(2) Å,c=15.989(3) Å, =106.93(1)°, =91.87(1)°, =119.50(1)°,V=1356.5(4) Å3,Z=2, 3489 observed reflections,R F=0.029.  相似文献   

5.
Synthetic routes to the cationic complexes [η5-C9H7Fe(CO)[2L]+, (L = CO, phosphine, phosphite, nitrile, pyridine) have been investigated. The most versatile method is oxidation of the dimer [η5-C9h7Fe(CO)2]2 with ferricinium ion. in the presence of the appropriate ligand. [η5-C9H7Fe(CO)3]+ is best prepared by oxidation of the dimer with Ph3CBF4. This tricarbonyl cation readily loses one CO group on reactiom with phosphines and P(OCH3). The acentonitrile ligand [η5-C9H7Fe(CO)2CH3CN]+ can also be replaced bny phosphines. Finally, reactions of η5-C9H7Fe(CO)2X, (X = Br, I) with phosphines also yield cationic products isolatedas PF6 salts.  相似文献   

6.
The complex t-Bu(η5-C5H5)FE(CO)2 has been treated with triphenylphosphine in refluxing THF to produce t-BuCO(η5-C5H5)Fe(CO)(PPh3). The large steric bulk of the t-butyl group suggests that this reaction should be faster than the reaction involving the methyl group, and a kinetic investigation illustrates this to be the case. The same steric bulk predicts that the reaction with SO2 should be slow, and indeed we have been unable to effect the related SO2 insertion reaction. Attempts to prepare the corresponding t-Bu(η5-C5H5)W(CO)3 led to formation of the related isobutyl complex.  相似文献   

7.
The metallation of the η5-C5H5(CO)2Fe-η15-C5H4Mn(CO)3 complex with BunLi (THF, ?78 °C) followed by the treatment of the lithium derivative with Ph2PCl afforded the η5-Ph2PC5H4(CO)2Fe-η15-C5H4Mn(CO)3 complex. The reaction of the latter with η5-C5H5(CO)3WCl in the presence of Me3NO produced the trinuclear complex η5-C5H5Cl(CO)2W-η15-(Ph2P)C5H4(CO)2Fe-η15-C5H4Mn(CO)3. The structure of the latter complex was established by IR, UV, and 1H and 31P NMR spectroscopy and X-ray diffraction. The reaction of MeSiCl3 with three equivalents of LiC5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3 gave the hexanuclear complex MeSi[C5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3]3.  相似文献   

8.
The salts [Fe2η55-C5H4CH{NMe3)CH(NMe2)C5H4}(CO)2(μ-CO)2][X] (X = I or SO3CF3) are the synthetic precursors to a wide range of [Fe2(η-C5H5)2(CO)2(μ-CO)2] derivatives in which the two cyclopentadienyl ligands are joined by a two-carbon bridge.  相似文献   

9.
10.
Abstract

In this review structural parameters of forty complexes with an inner coordination sphere of Pt(η2-P2L)(η2-S2L) are analyzed and classified These complexes crystallize in three crystal systems: orthorhombic (four examples), triclinic (six examples) and monoclinic (thirty examples). The organodiphosphines create four- (PCP), five- (PC2P), six- (PC3P) and seven- (PC4P) membered metallocyclic rings with mean P-Pt-P bite angle values of 72.5° (PCP) < 85.3° (PC2P) < 93.0° (PC3P) < 97.4° (PC4P). The dithiolates create four- (SCS), five- (SC2S), six- (SC3S; SCSCS; SPNPS; SPCPS) and seven- (SC4S) membered metallocyclic rings with mean S-Pt-S bite angle values of 74.5° (SCS) < 85.8° (SCSCS) < 87.0° (SPNPS) < 89.0° (SC2S) < 92.3° (SC4S) < 93.5° (SC3S) < 97.5° (SPCPS). The mean Pt-P and Pt-S bond distances are 2.257 and 2.328?Å, respectively. The data are compared with those found in complexes with inner coordination spheres of Pt(PL)2(SL)2, Pt(PL)22-S2L) and Pt(η2-P2L)(SL)2.  相似文献   

11.
Tetrakis(di-tert-butylmethylsilyl)tetragermacyclobutadiene]ruthenium tricarbonyl [η4-(But 2MeSi)4Ge4]Ru(CO)3 is synthesized. This analogue of well-known cyclobutadiene transition metal complexes bears a tetragermacyclobutadiene derivative as ligand. The structure and spectroscopic parameters of the complex are compared with those of its iron-containing analogue [η4-(But 2MeSi)4Ge4]Fe(CO)3. Based on experimental data and results of quantum chemical calculations, it is shown that the π-donating ability of ligands increases upon replacement of carbon atoms in the cyclobutadiene moiety by silicon or germanium atoms, tetrasilacyclobutadiene and tetragermacyclobutadiene being comparable in π-donating activity.  相似文献   

12.
《Comptes Rendus Chimie》2002,5(4):319-324
The ligand substitution by diphosphine L–L on (η5-C5H5)Fe(CO)2I usually results in the chelated 〚(η5-C5H5)Fe(CO)(η2-L–L)+〛〚I〛 product exclusively. One could suppress the chelated complexes and selectively prepare the bridged 〚{(η5-C5H5)Fe(CO)2}2(μ-L–L)2+〛 complexes by application of the electron-transfer chain catalysis with a chemical initiation. Introducing a catalytic amount of reductant at low temperature to the mixture of 2:1 (η5-C5H5)Fe(CO)2I/L–L in THF selectively produces the bridged complexes in 78–93% isolated yields where L–L is Ph2P(CH2)nPPh2, n = 1–4, or (η5-C5H4PPh2)2Fe.  相似文献   

13.
Abstract

Syntheses and structures of penta- and hexaphosphorus analogues of ferrocene have been described recently1. Unlike their simple ferrocene analogues, these complexes have further ligating potential towards other transition metal centres by virtue of the availability of the ring phosphorus lone-pair electrons that are not involved in the η5-coordination. We now describe the first examples of coordination compounds of the triphospha-ferrocene [Fe(η5-C5Me5) (η5-C2 tBu2P3]. In the ruthenium complex [Fe(η5-C5Me5)(η5-C2 tBu2P3) Ru3(CO)9] 2 two adjacent phosphorus atoms of the η5-C2 tBu2P3 ring are interlinked by a ruthenium carbonyl cluster in which all three ruthenium atoms interact with the phosphorus atoms. The tetrametallic nickel complex [Fe(η5-C5Me5)(η5-C2 tBu2P3)Ni(CO)2]2 3 represents the first example of intermolecular interlinkage of two phospha-ferrocene systems by two metal centres.  相似文献   

14.
The reaction of Cr(CO)3(NH3)3 with diphenylacetylene affords as a main product the complex with Cr(CO)3 moiety bound to a phenyl ring of diphenylacetylene; Cr(CO)36-PhC2Ph) (I). Complex I readily reacts with Co2(CO)8 yielding the mixed metal complex Cr(CO)362-PhC2Ph)Co2(CO)6 (II). The reaction proceeds with retention of the Cr(CO)36-arene) structural unit, the Co2(CO)6 fragment being bound to the triple bond of diphenylacetylene in μ22-mode. The structure of II was determined by single crystal X-ray analysis. The complex crystallizes in space group P21/c with unit cell parameters a 8.666(3) Å, b 18.046(3) Å, c 15.155(6) Å. β 97.57(3)°, V 2349(2) Å3, Z = 4, Dx = 1.70 g/cm3. The structure was solved by direct methods and refined by full-matrix least-squares technique to R and Rw values of 0.032 and 0.034, respectively, for 3655 observed reflections. The data obtained show that two structural units in II, Cr(CO)36-Ph-) and Co2(CO)622-CC), are distorted due to steric repulsion between these metal carbonyl moieties. The Cr(CO)3 fragment is shifted from the centre of the phenyl ring and slightly tilted with respect to the phenyl ring plane. The Co2C2 tetrahedron in the Co2(CO)622-CC) moiety is distorted in such a way that two of the four CoiCj bonds are elongated.  相似文献   

15.
Diyne FcCmCC.CFc (Fc is ferrocenyl) reacts with Ru3(CO)12 in boiling hexane to yield binuclear complexes Ru2 and Ru2(CO)6(C4Fc2(C=CFc)2C=O) containing ruthenacyclopentadiene and diruthenacycloheptadienone rings, respectively. The isomerism of the complexes is due to the different ways of coupling of the alkyne fragments of the diyne, namely, head-to-head, head-to-tail or tail-to-tail. The reaction of enyne PhC=CCH=CHPh with Ru3(CO)12 under similar conditions gives isomeric binuclear complexes Ru2(CO)6(C4Ph2(CH=CHPh)2) and trinuclear clusters Ru3(CO)6(w-CO)2(C4Ph2(CH=CHPh)2) and Ru3(CO)8(3-,1-1-4-2 C4Ph2(CH=CHPh)2). The structure of the latter was determined by X-ray diffraction analysis. The Ru3 triangle coordinates eight terminal CO groups and the organic ligand resulting from the head-to-head dimerization of enyne molecules; the ruthenacyclopentadiene moiety is 4-coordinated to the Ru(CO)2 group, and the third ruthenium atom is 2-bound to one of the PhCH=CH groups.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1261–1267, May, 1996.  相似文献   

16.
Buckminsterfullerene, C60, reacts with Ru(CO)5 to give a 1:1 adduct (η2-C60)Ru(CO)4. The synthesis and spectroscopic (IR and 13C NMR) characterization of this compound are described.  相似文献   

17.
Halogens, X2, and HgY2 (X = Cl, Br, I; Y = X, F, NO3, BF4) cleave the metalmetal bonds in [Fe2(η-C5H5)2(CO)4−n(CNMe)n] complexes (n = 0–4). Typically, e.g., when n = 2, X2 electrophiles give [Fe(η-C5H5)(CO)(CNMe)X] (a) and [Fe(η-C5H5)(CO)(CNMe)2]X (b) in relative yields which depend on X, the reaction solvent and n, but HgY2 give equimolar amounts of [Fe(η-C5H5)(CNMe)2Y] (c and [Fe(η-C5H5)(CO)2HgY] only. Hg(CN)2 reacts more slowly than other HgY2, and [Hg(PPh3)2I2] does not react at all. It is suggested that the reactions which give rise to products of type (a), (b) or (c) are all two-electron oxidation which proceed by way of adducts containing μ-CA → X2 or μ-CA → HgX2 groups (Ca = CO or CNMe). One of these adducts has been isolated, namely [Fe2(η-C5H5)2(CNMe)2{μ-CN(Me)HgCl2}2] · CHCl3.  相似文献   

18.
19.
金属簇合物具有独特的结构和成键方式。本文对铑簇合物的简正振动分析进行了研究。通过红外光谱用石蜡油糊涂KBr和聚乙烯窗口, 在Nicolet 200SXV FT-IR光谱上测定了Rh2(CO)4(μ-Cl)2的构型, 并使用分子振动全分析程序MVTA(Basic语言), 在PC机上进行计算。  相似文献   

20.
The di-hydride di-anion [H(2)Fe(4)(CO)(12)](2-) has been quantitatively obtained by protonation of the previously reported mono-hydride tri-anion [HFe(4)(CO)(12)](3-) in DMSO and structurally characterised in its [NEt(4)](2)[H(2)Fe(4)(CO)(12)] salt. It shows some subtle but yet significant differences in the stereochemistry of the ligands in comparison to the heavier Ru(4) and Os(4) congeners. The study of the reactivity of these [H(4 -n)Fe(4)(CO)(12)](n-) (n = 2,3) species allowed the serendipitous isolation and structural characterization of the new pentanuclear [HFe(5)(CO)(14)](3-) mono-hydride tri-anion. Attempts to obtain the latter in better yields led to the discovery of intermolecular CO/H(-) mutual exchange reactions and isolation and structural characterization of the [Fe(DMF)(4)][Fe(4)(CO)(12)(μ(5)-η(2)-CO)(μ-H)](2)·0.5CH(2)Cl(2) and [M(+)][Fe(4)(CO)(12)(μ(4)-η(2)-CO)(μ-H)](-) (M = K, Cs) adducts, the former containing an unprecedented isocarbonyl group. The isolation of new tetranuclear and, above all, pentanuclear hydridocarbonylferrates indicates that it is possible to further expand the chemistry of homoleptic Fe carbonyl species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号