首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the gas phase reaction between NO2 and CF2CCl2 has been investigated in the temperature range from 50 to 80°C. The reaction is homogeneous. Three products are formed: O2NCF2CCl2NO2 and equimolecular amounts of CINO and of O2NCF2C(O)Cl. The rate of consumption of the reactants is independent of the total pressure, the reaction products, and added inert gases and can be represented by a second-order reaction: However, the distribution of the products is influenced by the pressure of the present gases, which favor the formation of the dinitro-compound in a specific way. The effect of CF2CCl2 is the greatest. In the absence of added gases, the ratio of O2NCF2CCl2NO2 to that of O2NCF2C(O)Cl is proportional to (CF2CCl2 + γP products). The experimental results can be explaned by the following mechanism: P and X represent the products and the added gases:   相似文献   

2.
The Cl- and Br- initiated oxidations of CHCl(DOUBLEBOND)CCl2 in 700 torr of air at 296 K have been studied using a Fourier transform infrared spectrometer. Rate constants k(Cl+CHCl(DOUBLEBOND)CCl2)=(7.2±0.8)×10−11 and k(Br+CHCl(DOUBLEBOND)CCl2)=(1.1±0.4)×10−13 cm3 molecule−1 s−1 were determined using a relative rate technique with ethane and ethylene as references, respectively. The major products observed were CHXClC(O)Cl, (X=Cl or Br), CHClO, and CCl2O. Combining results obtained for the Cl-initiated oxidation of CHCl2(SINGLEBOND)CHCl2, we deduced that Cl-addition on trichloroethylene occurs via channel 1a, Cl+CHCl(DOUBLEBOND)CCl2→ CHCl2(SINGLEBOND)CCl2, (100±12)%. Self-reaction of the subsequently generated peroxy radicals CHCl2(SINGLEBOND)CCl2O2 leads to CHCl2CCl2O radicals which were found to decompose via channel 8a, CHCl2C(O)Cl+Cl, (91±11)% of the time, and channel 8b, CHCl2+CCl2O, (9±2)%. The reaction Br+CHCl(DOUBLEBOND)CCl2→CHBrCl(SINGLEBOND)CCl2 (17a) accounted for ≥(96±11)% of the total reaction. Decomposition of the CHBrCl(SINGLEBOND)CCl2O radicals proceeds (≥93±11)% via CHBrClC(O)Cl+Cl. As part of this work, k(Cl+CHCl2C(O)Cl)=(3.6±0.6)×10−14 and k(Cl+CHCl2(SINGLEBOND)CHCl2)=(1.9±0.2)×10−13 cm3 molecule−1 s−1 were measured. Errors reported above include statistical uncertainties (2σ) and estimated systematic uncertainties. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet: 29: 695–704, 1997.  相似文献   

3.
The reaction of NO2 with C2F4 was studied at 30°, 68°, 114°, and 157°C by in situ monitoring the infrared absorption bands of the products. The major primary products of the reaction are O2NCF2CFO and FNO. Smaller amounts of CF2O (and presumably NO) are also produced. There was no evidence for other primary products, though they may have been produced in minor amounts. The rate laws for the production of both O2NCF2CFO and CF2O are first order in both [NO2] and [C2F4]. CF2O production is at least partly heterogeneous as demonstrated by packing the quartz reaction vessel with Pyrex beads and by using a Monel cell. The homogeneous rate constant obtained from the high-temperature results gives a rate constant of 3.4 × 108 exp (minus;17000/RT) M?1sec?1 for CF2O production. Actually these Arrhenius parameters represent lower limits, since the heterogeneous reaction may still be playing a significant role. The production rate of O2NCF2CFO is not much affected by changing the nature of the surface or the surface to volume ratio. However the reaction may be heterogeneous, since the rate constant for its formation of 1.3 × 104 e×p (?7500/RT) M?1sec?1 has an abnormally low pree×ponential factor. E×periments in the presence of NO indicate that the mechanism for O2NCF2CFO formatlon is The intermediate can also react with NO: with k13/k12 = 1.3.  相似文献   

4.
The thermal gas-phase reaction of CF3OF with CCl2CCl2 has been studied between 313.8 and 343.8 K. The initial pressure of CF3OF was varied between 10.8 and 77.5 torr and that of CCl2CCl2 between 3.7 and 26.8 torr. CF3OF was always present in excess, varying the initial ratio of CF3OF to that of CCl2CCl2 from 1.3 to 10. Three products were formed: CF3OCCl2CCl2F, CCl2FCCl2F, and CF3O(CCl2CCl2) 2OCF3. The yields of CF3OCCl2CCl2F were 98–99.5%, based on the sum of the products. The reaction was a homogeneous chain reaction not affected by the total pressure. In presence of O2 the oxidation of CCl2CCl2 to CCl3C(O)Cl and COCl2 occurred. The proposed basic reaction steps are: generation of the radicals CF3O˙ and CCl2FCCl2˙ (κ1) in a biomolecular process between CF3OF and CCl2CCl2, formation of the radical CF3OCCl2CCl2˙ by addition of CF3O˙ to CCl2CCl2, chain generation of CF3O˙ by abstraction of fluorine atom from CF3OF by CF3OCCl2CCl2˙ (κ4), and chain termination by recombination of the radicals CF3OCCl2CCl2˙. The expressions obtained for the constants κ1 and κ4 are κ1 = 3.16 ± 0.6 × 107 exp(−15.2 ± 1.7 Kcal mol−1/RT) dm3 mol−1 s−1, κ4 = 3.7 ± 0.5 × 109 exp(−6.0 ± 1.1 Kcal mol−1/RT) dm3 mol−1 s−1. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Crystalline NO2[Fe(NO3)4] was obtained by dehydration of a solution of Fe(NO3)3 in 100 % HNO3 and subsequent sublimation. NO2[Zr(NO3)5] was synthesized by reaction of ZrCl4 with N2O5 followed by sublimation in vacuum. X‐ray single crystal structure determination showed both compounds to consist of nitronium cations, NO2+, and nitratometalate anions. N‐O distances in the linear NO2+ cations are in the range of 1.08—1.13Å. In both [Fe(NO3)4] and [Zr(NO3)5] anions, all nitrate groups are coordinated bidentately with average M‐O distances 2.134 and 2.293Å, respectively. Taking into account the position of N atoms around the M atoms, the arrangement of nitrate groups can be described as tetrahedral for the Fe complex and trigonal‐bipyramidal for the Zr complex. There are four shortest N(nitronium)····O(nitrate group) contacts with average distances of 2.705 and 2.726Å in NO2[Fe(NO3)4] and 2.749Å in NO2[Zr(NO3)5]. Nitronium pentanitratohafnate is isotypic to the zirconium complex.  相似文献   

6.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

7.
The ionic liquid (IL) trihalogen monoanions [N2221][X3] and [N2221][XY2] ([N2221]+=triethylmethylammonium, X=Cl, Br, I, Y=Cl, Br) were investigated electrochemically via temperature dependent conductance and cyclic voltammetry (CV) measurements. The polyhalogen monoanions were measured both as neat salts and as double salts in 1-butyl-1-methyl-pyrrolidinium trifluoromethane-sulfonate ([BMP][OTf], [X3]/[XY2] 0.5 M). Lighter IL trihalogen monoanions displayed higher conductivities than their heavier homologues, with [Cl3] being 1.1 and 3.7 times greater than [Br3] and [I3], respectively. The addition of [BMP][OTf] reduced the conductivity significantly. Within the group of polyhalogen monoanions, the oxidation potential develops in the series [Cl3]>[BrCl2]>[Br3]>[IBr2]>[ICl2]>[I3]. The redox potential of the interhalogen monoanions was found to be primarily determined by the central halogen, I in [ICl2] and [IBr2], and Br in [BrCl2]. Additionally, tetrafluorobromate(III) ([N2221]+[BrF4]) was analyzed via CV in MeCN at 0 °C, yielding a single reversible redox process ([BrF2]/[BrF4]).  相似文献   

8.
A polyoxometalate‐based inorganic–organic hybrid compound [CoII(2, 2′‐bpy)2]2[Mo8O26] ( 1 ) was synthesized by hydrothermal methods and structurally characterized by IR spectrum, TG analysis and X‐ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n, a = 10.0681(2), b = 16.4467(2), c = 15.7838(3) Å, β = 100.046(1)°, V = 2573.52(8) Å3, Z = 2. The structure of 1 is built up from β‐[Mo8O26]4? subunits covalently linked via [CoII(2, 2′‐bpy)2]2+ fragments into a infinite 1D {[CoII(2, 2′‐bpy)2]2[Mo8O26]} polymer.  相似文献   

9.
When Cl2NCF2CF2NCl2 is heated with CF2CFX (X = Cl, F) ClXCFCF2N(Cl)CF2CF2N(Cl)CF2CXClF (X = Cl, 2 ; F, 3 ) is formed. Mercury extracts chlorine fluoride from 2 and 3 to form new polyfluorobisazomethines, ClXCFCF2NCFCFNCF2CXClF (X = Cl, 4 ; F, 5 ). Photolysis of the product obtained from CCl2NCCl2CCl2NCCl2 with ClF, CF2ClN(Cl)CF ClCFClN(Cl)CF2Cl ( 6 ) gives another bisazomethine, CF2ClNCFCFNCF2Cl ( 7 ) with concomitant loss of Cl2. At 25°C, in the presence of CsF, 4 and 5 are cyclized to give (X = Cl, 8 ; F, 9 ), and 7 forms a bicyclic derivative at 100°C, ( 1 ). Addition of chlorine fluoride to 8 and to 1 produces ( 10 ) and ( 14 ), respectively. Photolysis of 10 results in the loss of CFCl3 to form ( 11 ), and 14 loses Cl2 and dimerizes to the hydrazine ( 15 ). The further addition of ClF to 11 gives rise to ( 12 ) which when photolyzed at 3000 Å forms a second cyclic hydrazine, ( 13 ).  相似文献   

10.
Summary Complexes [NiL2]X2·nH2O (L=diethylenetriamine; n=O when X=CF3CO2 or CCl3CO2; n=1 when X=Cl or Br, and n=3 when X=0.5SO4 or 0.5SeO4) and NiLX2·nH2O (n=1 when X=Cl or Br; n=3 when X=0.5SO4 or 0.5SeO4) have been synthesised and investigated thermally in the solid state. NiLSO4 was synthesised pyrolytically in the solid state from [NiL2]SO4·[NiL2]X2 (X=Cl or Br) undergo exothermic irreversible phase transitions (242–282° C and 207–228° C; H=–11.3 kJ mol–1 and –1.9 kJ mol–1 for [NiL2]Cl2 and [NiL2]Br2, respectively). [NiL2]-phenomenon (158–185° C; H=2.0 kJ mol–1). NiLX2· nH2O (n=1 or 3) undergo simultaneous deaquation-isomerisation upon heating. All the complexes possess octahedral geometry.  相似文献   

11.
Preparation and Properties of Trifluoromethylmercaptothiophosphoryldichloride The reaction of CF3SP(O)Cl2 with SPCl3 leads to a CF3S-chlorine exchange and gives CF3SP(S)Cl2 in 50% yield. A controlled hydrolysis of CF3SP(O)Cl2 affords CF3SP(O)(OH)2, that cannot be isolated as such, but it condenses to CF3SP(O)(OH)O? [P(SCF3)(O)? O]nP(O)(OH)SCF3. On the other hand, CF3SP(S)Cl2 reacts with water to yield H3PO4, CF3SH, S8, and HCl. CF3SP(X)Cl2 reacts with alcohols to give CF3SP(X)(OR)2 [R = CH3, C2H5, n-C3H7, CH(CH3)2, n-C4H9 and for X = O, R = C6H5, too]. The formation of semi-esters CF3SP(X)Cl(OR′) could be proven for X = O, R′ = CH3, C6H5 and for X = S, R′ = R. While CF3SP(O)(OC2H5)2 rapidly decomposes into SCF2 and FP(O)(OC2H5)2, the other compounds and primarily CF3SP(O)(OCH3)2 and CF3SP(S)(OR)2 ar stable. The reaction between CF3SCl and CH3SPCl2 results in CF3SCH2SPCl2 and that between CF3SP(O)Cl2 and AlCl3 gives [CF3SP(O)Cl]+[AlCl4]?. Physical and spectroscopical data are given for the newly formed compounds.  相似文献   

12.
Haloacetyl, peroxynitrates are intermediates in the atmospheric degradation of a number of haloethanes. In this work, thermal decomposition rate constants of CF3C(O)O2NO2, CClF2C(O)O2NO2, CCl2FC(O)O2NO2, and CCl3C(O)O2NO2 have been determined in a temperature controlled 420 l reaction chamber. Peroxynitrates (RO2NO2) were prepared in situ by photolysis of RH/Cl2/O2/NO2/N2 mixtures (R = CF3CO, CClF2CO, CCl2FCO, and CCl3CO). Thermal decomposition was initiated by addition of NO, and relative RO2NO2 concentrations were measured as a function of time by long-path IR absorption using an FTIR spectrometer. First-order decomposition rate constants were determined at atmospheric pressure (M = N2) as a function of temperature and, in the case of CF3C(O)O2NO2 and CCl3C(O)O2NO2, also as a function of total pressure. Extrapolation of the measured rate constants to the temperatures and pressures of the upper troposphere yields thermal lifetimes of several thousands of years for all of these peroxynitrates. Thus, the chloro(fluoro)acetyl peroxynitrates may play a role as temporary reservoirs of Cl, their lifetimes in the upper troposphere being limited by their (unknown) photolysis rates. Results on the thermal decomposition of CClF2CH2O2NO2 and CCl2FCH2O2NO2 are also reported, showing that the atmospheric lifetimes of these peroxynitrates are very short in the lower troposphere and increase to a maximum of several days close to the tropopause. The ratio of the rate constants for the reactions of CF3C(O)O2 radicals with NO2 and NO was determined to be 0.64 ± 0.13 (2σ) at 315 K and a total pressure of 1000 mbar (M = N2). © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Here we show that cyclic trimetric perfluoro-o-phenylenemercury (o-C6F4Hg)3 is capable of forming complexes with [PPh4]+Br, [PPh3Me]+I and [PPh4]+Cl of the composition [(o-C6F4Hg)3X] [PR3R′]+ (X = Br, R = R′ = Ph; X = I, R = Ph, R′ = Me) or {[(o-C6F4Hg)3X2}2−[PR3R′]+2 (X = Cl, R = R′ = Ph). An X-ray study of the complex with [PPh4]+Br revealed that it has the unusual structure of the polydecker bent sandwich wherein each Br anion is coordinated with six mercury atoms of two neighbouring molecules of (o-C6F4Hg)3.  相似文献   

14.
The kinetics of the metal exchange reaction between the Cu(II)-poly(vinyl alcohol) complex (Cu(II)-PVA) and Ca(II)-ethylenediamine-N,N,N′,N′-tetraacetic acid (Ca(II)-EDTA) were studied by mixing both solutions in a spectrophotometer at pH 9.7–11.0, at μ = 0.10(KNO3) and at 25°C. The reaction is initiated by the formation of unstable Cu(II)-H-PVA by the attack of H+ to Cu(II)-PVA, and while both ligand exchange and metal exchange steps occur, the latter may be rate-determining. The kinetic expression of this reaction was determined as -d[Cu(II)-PVA]/dt = k[Cu(II)-PVA] [H+] [PVA]/[Ca(II)-EDTA], where k = k1 + k′2[H+], k1 = 3.85 × 10−2 sec−1, k2 = k′2 · K−HCu(II)-H-PVA 9.59 × 105 1 mol−1 sec−1.  相似文献   

15.
《Polyhedron》2001,20(15-16):2073-2082
Reactions of nickel(II) salts with substituted ethane-1,2-diamine where one of the amine nitrogens is a part of a flexible cyclic ring, e.g. 1-(2-aminoethyl)piperidine (L), 1-(2-aminoethyl)pyrrolidine (L′) and 4-(2-aminoethyl)morpholine (L″) produce a number of complexes of the type: (i) Ni(AA)2X2 (where X=CF3CO2 , SCN and NO2 ; AA represents L/L′/L″); (ii) Ni(AA)2(CH3CN)2X2 (X=ClO4  and NO3 ); (iii) Ni(AA)2(H2O)2X2 (X=CF3SO3 , Cl, Br and I); and (iv) Ni(AA)2(H2O)4X2 (X=0.5SO4 2−, 0.5SeO4 2− and CF3SO3 ). The complexes possess octahedral geometry. The major complexes upon desolvation retain trans-geometry, some of which are cis with respect to the counter-anion and a few of them are square planar. X-ray single crystal structure analyses of trans-[NiL2(CH3CN)2](ClO4)2, trans-[NiL2(NCS)2] (violet) and trans-[NiL″2(NCS)2] (sky-blue) have been done. The violet and sky-blue thiocyanato species have blue and green coloured isomers, respectively, and these pairs of isomers are proposed to be conformational isomers. Solid state thermal investigation of the complexes has been carried out. The complexes show thermochromism due to deaquation–anation/deaquation reaction/change of conformation. Only [NiL2](ClO4)2, [NiL′2(CF3CO2)2] and [NiL″2(NO2)2] undergo thermally induced phase transition. The effect of flexible ring size on diamine has been discussed.  相似文献   

16.
Two supramolecular compounds based on tungstoferrate [FeW12O40]5?, [FeII(2,2′-bipy)3]2[HFeW12O40] · 5H2O (1), and [Hpy]2[4,4′-H2bipy]6(H3O)[FeW12O40]3 · 11H2O (2) (py = pyridine, bipy = bipyridine) were synthesized hydrothermally and characterized structurally. The hydrogen bonds between polyoxoanions and water and the edge-to-face π–π interaction between [FeII(2,2′-bipy)3]2+ with a shortest C–C distance of 3.513 Å are the main forces to construct the 3-D architecture of 1. In 2, a 3-D supramolecular architecture is assembled by the tungstoferrate anions, protonated 4,4′-bipy cations, and water through hydrogen bonding. The variable-temperature magnetic susceptibilities indicate that 1 is paramagnetic with μ eff corresponding to one Fe(III) with spin-only contribution, showing that Fe in the coordination cations has a +II oxidation number and low spin state.  相似文献   

17.
The rate constant for the reaction of the hydroxyl radical with 1,1,1,3,3-pentafluorobutane (HFC-365mfc) has been determined over the temperature range 278–323K using a relative rate technique. The results provide a value of k(OH+CF3CH2CF2CH3)=2.0×10−12exp(−1750±400/T) cm3 molecule−1 s−1 based on k(OH+CH3CCl3)=1.8×10−12 exp (−1550±150/T) cm3 molecule−1 s−1 for the rate constant of the reference reaction. Assuming the major atmospheric removal process is via reaction with OH in the troposphere, the rate constant data from this work gives an estimate of 10.8 years for the tropospheric lifetime of HFC-365mfc. The overall atmospheric lifetime obtained by taking into account a minor contribution from degradation in the stratosphere, is estimated to be 10.2 years. The rate constant for the reaction of Cl atoms with 1,1,1,3,3-pentafluorobutane was also determined at 298±2 K using the relative rate method, k(Cl+CF3CH2CF2CH3)=(1.1±0.3)×10−15 cm3 molecule−1 s−1. The chlorine initiated photooxidation of CF3CH2CF2CH3 was investigated from 273–330 K and as a function of O2 pressure at 1 atmosphere total pressure using Fourier transform infrared spectroscopy. Under all conditions the major carbon-containing products were CF2O and CO2, with smaller amounts of CF3O3CF3. In order to ascertain the relative importance of hydrogen abstraction from the (SINGLE BOND)CH2(SINGLE BOND) and (SINGLE BOND)CH3 groups in CF3CH2CF2CH3, rate constants for the reaction of OH radicals and Cl atoms with the structurally similar compounds CF3CH2CCl2F and CF3CH2CF3 were also determined at 298 K k(OH+CF3CH2CCl2F)=(8±3)×10−16 cm3 molecule−1 s−1; k(OH+CF3CH2CF3)=(3.5±1.5)×10−16 cm3 molecule−1 s−1; k(Cl+CF3CH2CCl2F)=(3.5±1.5)×10−17 cm3 molecule−1 s−1]; k(Cl+CF3CH2CF3)<1×10−17 cm3 molecule−1 s−1. The results indicate that the most probable site for H-atom abstraction from CF3CH2CF2CH3 is the methyl group and that the formation of carbonyl compounds containing more than a single carbon atom will be negligible under atmospheric conditions, carbonyl difluoride and carbon dioxide being the main degradation products. Finally, accurate infrared absorption cross-sections have been measured for CF3CH2CF2CH3, and jointly used with the calculated overall atmospheric lifetime of 10.2 years, in the NCAR chemical-radiative model, to determine the radiative forcing of climate by this CFC alternative. The steady-state Halocarbon Global Warming Potential, relative to CFC-11, is 0.17. The Global Warming Potentials relative to CO2 are found to be 2210, 790, and 250, for integration time-horizons of 20, 100, and 500 years, respectively. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
In the title compound, (C6H8N4)[AuCl4]Cl, the 4,4′‐bi(1H‐pyrazol‐2‐ium) dication, denoted [H2bpz]2+, is situated across a centre of inversion, the [AuCl4] anion lies across a twofold axis passing through Cl—Au—Cl, and the Cl anion resides on a twofold axis. Conventional N—H...Cl hydrogen bonding [N...Cl = 3.109 (3) and 3.127 (3) Å, and N—H...Cl = 151 and 155°] between [H2bpz]2+ cations (square‐planar node) and chloride anions (tetrahedral node), as complementary donors and acceptors of four hydrogen bonds, leads to a three‐dimensional binodal four‐connected framework with cooperite topology (three‐letter notation pts). The framework contains channels along the c axis housing one‐dimensional stacks of square‐planar [AuCl4] anions [Au—Cl = 2.2895 (10)–2.2903 (16) Å; interanion Au...Cl contact = 3.489 (2) Å], which are excluded from primary hydrogen bonding with the [H2bpz]2+ tectons.  相似文献   

19.
A number of salts of 2,2′:6′,2″ ‐terpyridyl (‘tpy’) with univalent anions (halides : X = Cl, Br, I; oxyanions of increasing basicity: ClO4, NO3, ‘tfa’ = trifluoroacetate, ‘tca’ = trichloroacetate), variously solvated, have been structurally characterized by single crystal X‐ray studies. In all cases the tpy moieties are found to be doubly protonated [tpyH2]2+, the hydrogen atoms being associated with the nitrogen atoms of the peripheral rings, these together with the central nitrogen atom being directed towards a common focus, in most cases ‘chelating’ one of the counter‐ion components in diverse ways. Thus the chloride and bromide compounds are isomorphous [(tpyH2)X]+X·H2O arrays; a second dihydrate phase is also described for the chloride, the two forms having the unchelated anion and water molecules engaged in hydrogen‐bonded networks essentially independent of [(tpyH2)X]+. The iodide is anhydrous, and of a different structural type, the anions, presumably too large for chelation, lying out of plane to either side, and linking different cations into a one‐dimensional polymer; in the perchlorate, the unsolvated aggregate is now discrete [(tpyH2)X2], a pair of perchlorate ions disposed to either side of the tpy plane, lying each with one oxygen atom interacting with both of the two protonating hydrogen atoms. In the anhydrous X = NO3, tfa, tca arrays, the lattices are solvated by the parent acids; one oxygen atom of each anion is chelated by the [tpyH2]2+ as in the chlorides, the other anion, with the acid, forming an independent ‘acid salt’ counterion [XHX] in each case, retaining the additional protonic hydrogen rather than further protonating the central ring, all being of the form [(tpyH2)X]X·HX = [(tpyH2)X][X(HX)].  相似文献   

20.
The reactions of the fluoride-ion donor, XeF6, with the fluoride-ion acceptors, M′OF4 (M′=Cr, Mo, W), yield [XeF5]+ and [Xe2F11]+ salts of [M′OF5] and [M2O2F9] (M=Mo, W). Xenon hexafluoride and MOF4 react in anhydrous hydrogen fluoride (aHF) to give equilibrium mixtures of [Xe2F11]+, [XeF5]+, [(HF)nF], [MOF5], and [M2O2F9] from which the title salts were crystallized. The [XeF5][CrOF5] and [Xe2F11][CrOF5] salts could not be formed from mixtures of CrOF4 and XeF6 in aHF at low temperature (LT) owing to the low fluoride-ion affinity of CrOF4, but yielded [XeF5][HF2]⋅CrOF4 instead. In contrast, MoOF4 and WOF4 are sufficiently Lewis acidic to abstract F ion from [(HF)nF] in aHF to give the [MOF5] and [M2O2F9] salts of [XeF5]+ and [Xe2F11]+. To circumvent [(HF)nF] formation, [Xe2F11][CrOF5] was synthesized at LT in CF2ClCF2Cl solvent. The salts were characterized by LT Raman spectroscopy and LT single-crystal X-ray diffraction, which provided the first X-ray crystal structure of the [CrOF5] anion and high-precision geometric parameters for [MOF5] and [M2O2F9]. Hydrolysis of [Xe2F11][WOF5] by water contaminant in HF solvent yielded [XeF5][WOF5]⋅XeOF4. Quantum-chemical calculations were carried out for M′OF4, [M′OF5], [M′2O2F9], {[Xe2F11][CrOF5]}2, [Xe2F11][MOF5], and {[XeF5][M2O2F9]}2 to obtain their gas-phase geometries and vibrational frequencies to aid in their vibrational mode assignments and to assess chemical bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号