首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of triethylamine as a mobile phase modifier on chromatographic efficiency in micellar liquid chromatography (MLC) is reported for nine different columns with various bonded stationary phases and silica pore sizes, including large-pore short alkyl chain, non-porous, and perfluorinated. Reduced plate height (h) versus reduced velocity (nu) plots were constructed for each column and the A' and C' terms calculated using a simplified Van Deemter equation introduced in our previous work. To further explore the practicality of using triethylamine in the micellar mobile phase, the efficiency of nine polar and non-polar substituted benzenes was studied on seven columns. Surfactant adsorption isotherms were measured for five columns with three micellar mobile phases to understand the relationship between adsorbed surfactant, mobile phase additive, and column efficiency. Clear improvements in efficiency were observed with the addition of 2% (v/v) triethylamine to a 1-butanol modified aqueous micellar mobile phase. This finding is supported by the lower amount of surfactant adsorbed onto the stationary phase when TEA is present in the mobile phase compared to an SDS only or a 1-butanol modified SDS mobile phase.  相似文献   

2.
Micellar liquid chromatography (MLC) uses surfactant solutions as mobile phases with added organic additives to enhance both the elution strength and the chromatographic efficiency. Two aliphatic carboxylic acids (1-butanoic and 1-pentanoic) were used as MLC additives and compared with the two corresponding alcohols (1-butanol, 1-pentanol) in terms of elution strength, efficiency and selectivity. A set of 11 phenol derivatives was used as probe compounds. All micellar mobile phases were prepared with sodium dodecylsulfate (SDS) with concentration ranging from 0.05 to 0.15 M and the modifier content within 1.0 and 5.0% (v/v). The elution strength of different mobile phases containing a constant amount of SDS and different amounts of modifiers; and mobile phases containing a constant amount of modifier and different SDS concentration were determined and discussed. The effect of the acid modifiers on efficiency was studied constructing van Deemter plots that showed no minimum within the 0.01–0.7 mL/min flow rate range studied. Temperature effects were also studied constructing the classical van’t Hoff plots. The slight curvature of the plots in the 25–70 °C range may indicate some modification of the surfactant-bonded moiety layer on the stationary phase surface. Since no definitive advantage of the use of aliphatic acids were established compared to their alcohol counterpart, their terrible smell will probably preclude their use as MLC organic modifiers.  相似文献   

3.
The paper describes a new test designed in micellar LC (MLC) to compare the commercial C18 stationary phase properties. This test provides the total hydrophobicity, hydrophilicity, steric selectivity, hydrogen bonding, and ion‐exchange capacity properties calculation of the ODS stationary phases. Both the test compounds and chromatographic separation conditions choice for column characterization in MLC are detailed. The chromatographic performance of several stationary phases that are used in MLC was evaluated with specific chromatographic test comprising nine test compounds, possessing different physico‐chemical properties, which were injected on different supports with two micellar mobile phases: one at pH 7.0 (0.075 mol/L SDS and 1.5% v/v 1‐pentanol), and other at pH 2.7 (0.075 mol/L SDS and 1.5% v/v 1‐pentanol adjusted to pH by TFA). Fundamental column chromatographic properties were obtained under these conditions and were treated by hierarchical cluster analysis. From the results of cluster analysis, two closely related groups of columns are distinguished, and it was shown that the chosen column characteristic parameters allow characterizing both sorbent and micellar chromatographic system properties. Eleven columns were analyzed by this test, which allows a comparison of columns with the aim of the selection of suitable and analogous column for the analysis with MLC.  相似文献   

4.
The micellar liquid chromatographic (MLC) separations of polycyclic aromatic hydrocarbons (PAHs) were optimized for three micellar systems, cetyltrimethylammonium chloride (CTAC), dodecyltrimethylammonium chloride (DTAC), and sodium dodecylsulfate (SDS), with 1-pentanol as the only organic additive. A difference in the separation was observed between CTAC and SDS/DTAC. Under each optimized separation conditions, CTAC-modified mobile phase provides the least desirable separation, which is attributed to its longer carbon tail (C16 vs. C12). In addition to 1-pentanol, the main organic additive, a second organic additive (3% 1-propanol) in the micelle-modified mobile phase was found to enhance the resolution of PAH chromatographic peaks. However, the extent of the enhancement varies for the different micellar systems, with the greatest resolution improvement seen for CTAC, and little effect for shorter-tail SDS and DTAC. This study shows the potential use of second organic additive (1-propanol), to the main nonpolar additive (1-pentanol), in facilitating the MLC separation of larger nonpolar compounds.  相似文献   

5.
High-performance liquid chromatography of proteins with silica bonded diphenyl stationary phase and hydro-organic mobile phases with linear gradient elution has been carried out with binary organic modifiers. The use of a mixture of 2-propanol and 1-butanol facilitated elution at total organic modifier concentrations significantly lower than with the use of 2-propanol alone. Furthermore higher protein recovery and retention of biological activity was obtained with the binary organic modifier because the increase in eluent strength with binary organic modifier was greater than that of the denaturing strength of the eluent. The use of a short, 3 cm long, column, relatively high flow-rates and steep gradients was also advantageous in attenuating protein denaturation. The results were interpreted within the framework of a theoretical treatment of the combined effect of the retention process and denaturation reaction simultaneously occurring in the column.  相似文献   

6.
Broad peaks are obtained when purely aqueous micellar phases are used in micellar liquid chromatography (MLC). The causes of reduced efficiency in MLC are investigated. Slow solute mass-transfer kinetics between micelles, the aqueous phase and the surfactant covered stationary phase are the origins of the efficiency loss. Knox plots show that the reduced efficiency comes from A term increase and, for lipophilic solutes, A and C terms increases. Surfactant adsorption reduces the pore volume and surface area of the stationary phase changing the flow anisotropy (A term). The surfactant adsorbed layer slows down the mass transfer (C term). Three ways for efficiency loss remediation are known: flow-rate reduction, temperature increase and alcohol addition. Alcohols are known to change the micelle structure and to increase the kinetics of micelle formation-destruction. It is shown that the ratio of the alcohol chain length to surfactant alkyl chain length, Cn, OH/Cnm surf, should be equal or higher than 1/3 to produce the best efficiency enhancements in MLC. Also, the volume of alcohol to be added is not absolute but relative to the surfactant concentration. The alcohol to surfactant concentration ratio should be kept constant. Temperature increases and especially alcohol additions reduce the retention factors. Thermodynamic and kinetics of the micellar exchanges in MLC cannot be dissociated.  相似文献   

7.
Organic solvents are traditionally added to micellar mobile phases to achieve adequate retention times and peak profiles, in a chromatographic mode which has been called micellar liquid chromatography (MLC). The organic solvent content is limited to preserve the formation of micelles. However, at increasing organic solvent contents, the transition to a situation where micelles do not exist is gradual. Also, there is no reason to neglect the potentiality of mobile phases containing only surfactant monomers instead of micelles (high submicellar chromatography, HSC). This is demonstrated here for the analysis of β-blockers. The performance of four organic solvents (methanol, ethanol, 1-propanol, and acetonitrile) was compared in mobile phases containing the anionic surfactant sodium dodecyl sulphate in the MLC and HSC modes. The association of the organic solvent molecules with micelles gives rise to a significant loss in the elution strength of the organic solvent; whereas upon disruption of micelles, it tends to that observed in the hydro-organic mode. The elution behaviour of the β-blockers was modelled to predict the retention times. This allowed the detailed exploration of the selectivity and resolution of the chromatographic systems in relatively wide ranges of concentration of surfactant and organic solvent. The best performance in terms of resolution and analysis time was achieved using HSC with acetonitrile, being able to base-line resolve a mixture of eight β-blockers. Ethanol also provided a good separation performance, significantly improved with respect to methanol and 1-propanol. In contrast, the hydro-organic mode using acetonitrile or any of the short-chain alcohols could not succeed with the separation of the β-blockers, owing to the poorer selectivity and wider peaks.  相似文献   

8.
Cationic, anionic, and nonionic surfactants are characterized for their usefulness as micellar mobile phases in reversed-phase chromatography. Conditions found previously to provide optimum chromatographic efficiency for sodium dodecyl sulfate also provide high efficiency for the cationic and nonionic surfactants studied. The use of 3% n-propanol in the micellar mobile phase and column temperatures of 40°C appear to offer a broadly applicable solution to the low efficiency previously reported for micellar mobile phases. A chromatographic method for the determination of critical micelle concentrations is reported; it compares favorably with literature methods. Micellar mobile phases are shown to mimic ion-pairing mobile phases, allowing the separation of neutral solutes as well as solutes charged oppositely to the surfactant and offer a more rugged method of analysis than hydro-organic ion-pairing methods.  相似文献   

9.
The effect of the steric structure and concentration of the mobile phase modifier on the retention (kappa') and stereoselectivity (alpha) of a series of enantiomeric amides has been investigated. The amides were chromatographed on a commercially available cellulose tribenzoate chiral stationary phase (CSP) using mobile phases composed of hexane and two homologous series of alcohols: methanol, ethanol, 1-propanol and 2-propanol, 2-butanol, 2-pentanol, 2-hexanol. The results of the study indicate that the alcoholic mobile phase modifiers compete with the solutes for achiral and chiral binding sites and that the steric bulk around the hydroxyl moiety of the modifier plays a role in this competition. Increased steric bulk tends to result in increased kappa' and alpha. However, the results also suggest that the effect of the alcoholic mobile phase modifiers on stereoselectivity may also be due to binding to achiral sites near or at the chiral cavities of the CSP which alters the steric environment of these cavities.  相似文献   

10.
Whereas the retention rules of achiral compounds are well defined in high-performance liquid chromatography, on the basis of the nature of the stationary phase, some difficulties appear in super/subcritical fluid chromatography on packed columns. This is mainly due to the supposed effect of volatility on retention behaviours in supercritical fluid chromatography (SFC) and to the nature of carbon dioxide, which is not polar, thus SFC is classified as a normal-phase separation technique. Moreover, additional effects are not well known and described. They are mainly related to density changes of the mobile phase or to adsorption of fluid on the stationary phase causing a modification of its surface. It is admitted that pressure or temperature modifications induce variation in the eluotropic strength of the mobile phase, but effects of flow rate or column length on retention factor changes are more surprising. Nevertheless, the retention behaviour in SFC first depends on the stationary phase nature. Working with polar stationary phases induces normal-phase retention behaviour, whereas using non-polar bonded phases induces reversed-phase retention behaviour. These rules are verified for most carbon dioxide-based mobile phases in common use (CO(2)/MeOH, CO(2)/acetonitrile or CO(2)/EtOH). Moreover, the absence of water in the mobile phase favours the interactions between the compounds and the stationary phase, compared to what occurs in hydro-organic liquids. Other stationary phases such as aromatic phases and polymers display intermediate behaviours. In this paper, all these behaviours are discussed, mainly by using log k-log k plots, which allow a simple comparison of stationary phase properties. Some examples are presented to illustrate these retention properties.  相似文献   

11.
The influence of alcohol modifiers with different chain length on the migration time window in micellar electrokinetic chromatography (MEKC) has been studied. Highly polar alcohols like methanol and 1-propanol are typical aqueous phase modifiers. Higher alcohols like 1-butanol, 1-pentanol and 1-hexanol influence the micellar structure and are considered as micellar phase modifiers. The effect of long chain alcohols is small because of their low applicable concentrations.  相似文献   

12.
Abstract

This paper will summarize several new findings obtained in our laboratory on the use of micellar mobile phases in liquid chromatography. The topics to be addressed include (i) stationary phase modification by the mobile phase surfactant in micellar liquid chromatography, (ii) investigation of the retention mechanism in micellar liquid chromatography (MLC) using an alkyl-benzene homologous series, (iii) evaluation of the effects of organic additives upon retention and efficiency in MLC, and (iv) preliminary characterization of several new classes of surfactant molecules for use in MLC. The information gained from these studies provides new insights into the dynamics of MLC and demonstrates their potential usefulness in several new separation applications including the resolution of optical isomers.  相似文献   

13.
A simple, sensitive, and precise micellar liquid chromatographic method for simultaneous analysis of sulfamethoxazole and trimethoprim, with ultraviolet detection at 245 nm, has been developed, validated, and used for determination of the compounds in commercial pharmaceutical products. The compounds were well separated on a Hypersil ODS reversed-phase column at 35°C by use of a mobile phase consisting of 0.1M sodium dodecyl sulfate in a 2:98 (V/V) mixture of 1-butanol and pH 3.0 phosphate buffer solution at a flow rate of 1.0 mL min?1. A comparative study of the performance of reversed-phase liquid chromatography with aqueous-organic or micellar-organic mobile phases for separation of sulfamethoxazole and trimethoprim is reported. The study showed that micellar liquid chromatography (MLC) and reversed-phase liquid chromatography (RP HPLC) are of similar efficiency, sensitivity, and selectivity for determination of sulfamethoxazole and trimethoprim.  相似文献   

14.
We report the application of column temperature programs as a tool to examine unusual temperature-induced behaviors of polysaccharide chiral stationary phases (CSPs). Using dihydropyrimidinone (DHP) compounds as probes we observed the heating (10-50 degrees C) and cooling (50-10 degrees C) van't Hoff plots of retention factors and/or selectivities of DHP compounds were not superimposable on AD, IA, and AS-H columns solvated with ethanol (EtOH)/n-hexane (n-Hex) mobile phases. The plots were not superimposable on AD, IB, and AS-H columns solvated with 2-propanol (2-PrOH)/n-Hex mobile phases. The thermally induced path-dependant behaviors were caused by slow equilibration as evidenced by the disappearance of the hysteresis in the second heating to cooling cycle and in a cooling to heating cycle. From the step-temperature program (10-50-10 degrees C), only EtOH solvated AD and AS-H phases showed the change of retention factors and/or selectivities with time while only 2-PrOH solvated AS-H phase showed similar behaviors.  相似文献   

15.
The esterification of hexanoic acid and 1-pentanol catalyzed by the lipase fromChromobacterium viscosum was studied at 298.2 K using different Winsor systems as reaction medium. The microemulsion systems consisted of brine and alkane stabilized by the anionic surfactant sodium dodecylsulphate and a short-chained alcohol. The alcohol acts both as a reactant and as a part of the reaction medium. Therefore, it is of great fundamental interest to know the phase behavior of the used microemulsion systems. Partial phase diagrams were determined and the efficiency of different alcohols on the transition from a Winsor I system to a Winsor III or a Winsor IV system with bicontinuous structure and further to a Winsor II system was investigated. The investigated alcohols were 2-methyl-1-propanol, 1-butanol, 2-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-pentanol, 3-methyl-1-pentanol, 4-methyl-1-pentanol, and 1-hexanol. The aqueous medium consisted of 0.5 m NaCl(aq) or a phosphate buffer (pH=7) and the organic medium of octane or 2,2,4-trimethyl pentane. A long alkyl chain of the alcohol or a branching far from the hydroxyl group gives a more efficient cosurfactant and a transition from Winsor I to Winsor III or Winsor IV at lower alcohol contents. In the Winsor III system the yield of 1-pentyl hexanoate is twice as high as the yield in the bicontinuous Winsor IV system.  相似文献   

16.
Micellar liquid chromatography (MLC) is a reversed-phase liquid chromatographic (RPLC) mode with mobile phases containing a surfactant (ionic or non-ionic) above its critical micellar concentration (CMC). In these conditions, the stationary phase is modified with an approximately constant amount of surfactant monomers, and the solubilising capability of the mobile phase is altered by the presence of micelles, giving rise to diverse interactions (hydrophobic, ionic and steric) with major implications in retention and selectivity. From its beginnings in 1980, the technique has evolved up to becoming a real alternative in some instances (and a complement in others) to classical RPLC with hydro-organic mixtures, owing to its peculiar features and unique advantages. This review is aimed to describe the retention mechanisms (i.e. solute interactions with both stationary and mobile phases) in an MLC system, revealed in diverse reports where the retention behaviour of solutes of different nature (ionic or neutral exhibiting a wide range of polarities) has been studied in a variety of conditions (with ionic and non-ionic surfactants, added salt and organic solvent, and varying pH). The theory is supported by several mechanistic models that describe satisfactorily the retention behaviour, and allow the measurement of the strength of solute-stationary phase and solute-micelle interactions. Suppression of silanol activity, steric effects in the packing pores, anti-binding behaviour, retention of ionisable compounds, compensating effect on polarity differences among solutes, and the contribution of the solvation parameter model to elucidate the interactions in MLC, are commented.  相似文献   

17.
The capacity factors (k′) of several substituted phenols were measured by using β- and γ-cyclodextrin bonded-phase columns with mobile phases varying from the classical normal-phase conditions (e.g., heptane/2-propanol) to the reversedl-phase conditions (e.g. water/2-propanol). The cyclodextrin columns have unusual selectivities in both normal- and reversed-phase separations because of their large number of hydroxyl functional groups and their ability to form inclusion complexes with substrates. The occurrences of minima in plots of log k′ vs. percent organic modifier for various substituted phenols are considered to result from solute/solvent competition for interaction with the stationary phase and from the relative hydrophobicity of the stationary and mobile phases.  相似文献   

18.
徐丽芳  鲁耀  李奕  许旭 《色谱》2010,28(4):426-429
以高效液相色谱手性固定相法对非洛地平(FEL)进行手性拆分。分别采用两种类型的纤维素-三(对甲基苯甲酸酯)手性柱Chiralcel OJ-R和Chiralcel OJ-H进行比较实验,以正己烷-异丙醇(90:10, v/v)为流动相,考察了流动相、柱温对保留及手性拆分的影响。实验显示,两柱拆分FEL的van’t Hoff图均发生了转折,在高温区域为焓驱动,在低温区域为熵驱动。两柱在温度升高时拆分FEL的分离度均提高,其中OJ-H的分离度优于OJ-R。两种手性柱对FEL具有相似的拆分机理。  相似文献   

19.
Seven new stationary phases with different number of proline units and/or different linkage to silica gel were prepared and evaluated in order to improve the performance of proline chiral stationary phases. The average separation factor achieved with the 53 analytes increases with the number of proline units in the stationary phases. When the proline peptides are directly attached to the 3-methylaminopropyl silica gel without using the 6-methylaminohexanoic acid linker, the stationary phases perform better overall. For decaproline chiral stationary phase 8, the separation also depends on the mobile phase system used. For this stationary phase, the CH2Cl2/hexanes/2-propanol system significantly outperforms the 2-propanol/hexanes system. For the 53 analytes tested, the separation factors achieved with this stationary phase compare well with those for three commercial columns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号