共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为了减小锶原子跃迁谱线的多普勒增宽及频移,需要对锶原子进行激光冷却以降低它的速度,而一级冷却只能将原子温度降低至mK量级,这样的原子其速度过大而无法有效地装载至光晶格中,因此必须进行二级冷却.锶原子存在单重态与三重态(5s2)1S0-(5s5p)3P1间互组跃迁,利用与其跃迁波长在689 nm的窄线宽激光对锶原子进一步冷却,可将锶原子团温度降低至μK量级.利用时序有效、准确地控制磁场和光场与原子相互作用时间,通过飞行时间法对锶冷原子温度进行了测算.实验中应用计算机精确控制磁光阱区域中冷原子团下落时间,EMCCD记录冷原子团初始时刻和下落20 ms后的状态.经过分析计算二级冷却温度为4.39 μK,不确定度仅为0.19 μK,二级冷原子团数目约为1.2×10 7.低温二级冷却锶原子温度及原子数目的获得为锶光钟跃迁信号的信噪比估计提供实验参考,也是实现高精度时间频率标准的前提. 相似文献
3.
4.
利用CCD面阵接收器,通过标定的方法,将其准确安置在长焦距透镜后焦面上,并找出CCD 象元数与原场发散角的对应关系,从而迅速确定远场发散角。同时用短焦距透镜对 光束限制光阑成像,测得近场光斑光强分布。以激光束振幅函数的傅里叶变换作为理想衍射 极限,将远场发散角与之比较,可以得到用几倍衍射极限的方法表示的实际光束质量。 相似文献
5.
6.
7.
8.
采用飞秒激光辐照铜靶,利用电子角分布仪和LiF热释光探测器测量了快电子发射的发散角.实验结果显示,快电子的发散角与激光入射角密切相关,随着激光入射角增加,快电子的发散角逐渐减小.在相同入射角条件下,加上预脉冲将导致快电子的发散角变小.这个结果为获取较小发散角的快电子束提供了实验参考. 相似文献
9.
10.
11.
12.
切伦科夫辐射是一种方向性极好的辐射,其辐射能量发射方向严格地与带电粒子的运动方向相关,辐射光携带了带电粒子的方向信息,利用这种特性可以进行电子束发散角及其分布的测量。在基于切伦科夫辐射原理的基础上,考虑电子与物质作用时的多重库仑散射、电离等效应,进行了电子束发散角测量的蒙特卡罗数值模拟程序的建模工作,并完成了理想电子束及具有发散角分布的电子束的测量技术模拟工作。大量模拟结果显示,这种测量方法是可行的,具有对电子束发散角分布进行直接测量的能力,并且其测量系统结构简单。 相似文献
13.
利用切伦科夫辐射方向性极好的特性进行电子束发散角的测量是一个比较有希望的方法,但转换靶材料对电子的库伦作用力等因素又使得电子束散角展宽,对发散角的测量产生影响。在将转换靶划分成多重薄片并以串联的形式构建了靶模型,考虑了库仑力、多重散射、轫致辐射、电离等全物理过程作用效果的情况下,利用蒙特卡罗模拟软件相关程序对电子在靶材料中的发散过程进行了仿真。基于电子束散角分布与切伦科夫辐射光子分布相对应的原理,完成了对电子束发散角测量技术的模拟,获得了转换靶材料及其厚度、电子束能散、测量系统光学带宽等对电子束发散角测量的影响规律,为测量系统的设计及数据反演处理工作提供了指导性的建议。模拟结果显示,基于切伦科夫辐射进行电子束发散角测量的方法具有可行性,具有一定的对电子束发散角分布进行测量的能力。 相似文献
14.
15.
16.
<正> 激光光源的主要特征之一是方向性好、能量高度集中,激光的这一特性开拓了如激光测距等方面的应用。目前,Nd~(3+):YAG晶体材料由于增益大、阈值低、适合于低泵浦高效率工作,利于整机小型化,加之热传导率高、硬度大,可在高重频与连续状态下工作,现正作为一种优质激光工作物质得到广泛应用。 相似文献
17.
18.
本文阐明了一台原子吸收光谱仪的信号同步对仪器性能有显著的影响,灯的快速脉冲导致更精确的背景校正和更精确的发射校正,双光束的不平衡调使用噪音更低,这些特点的最显著之处是能够校正背景吸收中的快速变化。而该变化是石墨原子吸收中背景校正误差最基本的来源。 相似文献
19.
20.