首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yinyan Wang 《实验力学》2011,26(5):556-564
Phase-stepping technique is applied to the analysis of fringe patterns of shadow moiré of electronic packages.Sensitivity of the fringe pattern analysis is demonstrated to be significantly increased.Thermally induced warpage of electronic packages is successfully measured in real-time as the sample is driven through a simulated reflow process.The paper discusses the technique of phase stepping,noise filtering and its application to the shadow moiré method.Applications of the technology are presented.  相似文献   

2.
The cross-section profiles of polymer deformation in the hot embossing lithography process were studied by finite element method for various temperature, time and pressure. In order to successfully fabricate high-frequency grating lines, an optimal imprint condition was selected and the related experiments were carried out. The fabricated gratings were illuminated by the SEM image and AFM analysis, which agree well with the simulated results. Therefore, the finite element methods are helpful for a better comprehension of the polymer flow phenomena governing the pattern definition and the design of optimum processing conditions for successful grating fabrication.  相似文献   

3.
In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gratings on the surfaces of constantan wires and the random phase shifting technique is used to process moir′e fringes. The virtual strain method is briefly introduced and used to calculate the real strain of specimens. In order to study the influence of a defect on the electrical failure of the constantan wire, experiments were conducted on two specimens, one with a crack, while the other one without any crack. By comparing the results, we found that the defect makes the critical beam current of electrical failure decrease. In addition, the specimens were subjected to compression after electrical failure, in agreement with the observed crack closure of the specimen. The successful results demonstrate that the moir′e method is effective to characterize the full-field deformation of constantan wires on the polymer membrane, and has a good potential for further application to the deformation measurement of thin films.  相似文献   

4.
In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the specimen surface, and the strain can be deduced from the changes in carrier fringes before and after the deformation of an object. Four coherent laser beams are used to obtain the carrier fringe patterns of field U and V. Both theoretical analysis and numerical simulation indicate that the ideal accuracy of strain can be controlled within a range of ±1με. Case study of a plane extension experiment shows that the measurement accuracy of strain can be controlled within the range of ±10με. The average strain values of every row of field U and every column of field V can be obtained by using this method, and approximated strain of every pixel in the whole-field can be further acquired, and thus it is possible to measure tiny strains occurred in a micro-field. The technology in this paper can provide comprehensive information for analyzing related mechanical content in the field of MEMS.  相似文献   

5.
The sampling Moiré(SM) method is one of the vision-based non-contact deformation measurement methods, which is a powerful tool for structural health monitoring and elucidation of damage mechanisms of materials. In this review, the basic principle of the SM method for measuring the twodimensional displacement and strain distributions is introduced. When the grid is not a standard orthogonal grating and cracks exist on the specimen surface, the measurement methods are also stated. Two of the most typical application examples are described in detail. One is the dynamic deflection measurement of a large-scale concrete bridge, and the other is the residual thermal strain measurement of small-scale flip chip packages. Several further development points of this method are pointed out. The SM method is expected to be used for deformation measurement of various structures and materials for residual stress evaluation, crack location prediction, and crack growth evaluation on broad scales.  相似文献   

6.
The problem of the elastic interaction between a screw dislocation and a three-phase circular inclusion with interracial rigid lines (anti-cracks) is investigated. An efficient and concise method for the complex multiply connected region is developed, with which explicit series form solutions of the complex potentials in the matrix, and the interphase layer and inclusion regions are derived. Based on the complex potentials, the image force on the screw dislocation is then calculated by using the Peach-Koehler formula. The equilibrium position of the dislocation is discussed in detail for various rigid line geometries, interphase layer thicknesses and material property combinations. The main results show that the interracial rigid lines exert a significant perturbation effect on the motion of the screw dislocation near the circular inclusion surrounded by an interphase layer.  相似文献   

7.
Soft material is becoming increasingly important to many industries, which leads to the demand for a better understanding of its mechanical properties under large deformation. In this paper, a technique of integrating the digital moiré method and embedded-grating approach is presented for investigating mechanical behaviors of a vulcanized silicone rubber in contact with a wedge-shaped indenter. Two distinct deformation sectors are observed from the experimental result. A simple way of computing strain is also presented by analysing grid deformation within the framework of geometrical nonlinearity. Three regions were observed from strain distribution along the horizontal direction: the contact region, the sink-in region and the far-field region.Moreover, the extent of the sticky region and that of the slippy region within the contact interface are distinguished, which can provide realistic data for theoretical modelling. Based on the finite deformation elasticity theory, the distribution of contact pressure and shear stress over the contact interface are derived for prediction of possible cracks.  相似文献   

8.
Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass,a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra,and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed.The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity.  相似文献   

9.
The laser generated ultrasound in solids in a thermoelastic regime is studied by solvingthermoelastic wave equations. Analytic expressions of two-dimensional far-field ultrasonic displace-ments including the effects of thermal diffusion and optical penetration were obtained by means of theintegral transform method. The meaning of the expressions is discussed. The effects of optical absorp-tion coefficient on the directivity of laser generated ultrasound in non-metallic solids are also discussed.The directivity patterns of both longitudinal waves and shear waves are presented.  相似文献   

10.
This paper presents a novel non-contact method for evaluating the resonant frequency of a microstructure, Firstly, the microstructure under test is excited by ultrasonic waves. This excitation method does not impose any undefined load on the specimen like the electrostatic excitation and also this is the first actual use of ultrasonic wave for exciting a microstructure in the literature. Secondly, the amplitudes of the microstructure are determined by image edge detection using a Mexican hat wavelet transform on the vibrating images of the microstructure. The vibrating images are captured by a CCD camera when the microstructure is vibrated by ultrasonic waves at a series of discrete high frequencies (〉30 kHz). Upon processing the vibrating images, the amplitudes at various excitation frequencies are obtained and an amplitude-frequency spectrum is obtained from which the resonant frequency is subsequently evaluated. A micro silicon structure consisting of a perforated plate (192 × 192 μm) and two cantilever beams (76 × 43 μm) which is about 4 μm thickness is tested. Since laser interferometry is not required, thermal effects on a test object can be avoided. Hence, the setup is relatively simple. Results show that the proposed method is a simple and effective approach for evaluating the dynamic characteristics of microstructures.  相似文献   

11.
The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are studied for the response of a Timoshenko beam supported by a nonlinear foundation. The nonlinear Pasternak foundation is assumed to be cubic. Therefore, the efects of the shear deformable beams and the shear deformation of foundations are considered at the same time. The Galerkin method is utilized for discretizing the nonlinear partial differential governing equations of the forced vibration. The dynamic responses of Timoshenko beams are determined via the fourth-order Runge–Kutta method. Moreover, the efects of diferent truncation terms on the dynamic responses of a Timoshenko beam resting on a complex foundation are discussed. The numerical investigations shows that the dynamic response of Timoshenko beams supported by elastic foundations needs super high-order modes. Furthermore, the system parameters are compared to determine the dependence of the convergences of the Galerkin method.  相似文献   

12.
This study is devoted to the investigation of thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined isothermal plane. It is assumed that the reaction is exothermic under Arrhenius kinetics, neglecting the consumption of the material. The governing non-linear equations for conservation of momentum and energy are obtained and solved by using a new computational approach based on a special type of Hermite-Padé approximation technique implemented in MAPLE. This semi-numerical scheme offers some advantages over solutions obtained with traditional methods such as finite differences, spectral method, and shooting method. It reveals the analytical structure of the solution function. Important properties of overall flow structure including velocity field, temperature field, thermal criticality, and bifurcations are discussed.  相似文献   

13.
Investigation of grain mass flow in a mixed flow dryer   总被引:1,自引:0,他引:1  
The numerical modeling of grain drying is a topic of great relevance to post-harvest engineering. The required type of drying process depends on the quantity of grain to be dried and the required quality of the grain. The choice of the drying system depends on the operating parameters of the drying process. The granular flow pattern of the material exerts a significant influence on the drying process. Post-harvest drying of grain is essential for better storage, handling, and processing. Therefore, it is important to know the material behavior that controls the particle flow patterns of grain in the drying equipment to guarantee the product quality and to optimize the drying process conditions. The discrete element method (DEM) was applied to investigate the particle flow pattern of wheat through a mixed-flow dryer (MFD) without airflow, and the findings were compared with experimental results in this work. The investigations were performed using dry wheat with 14 wb% moisture content.  相似文献   

14.
A Lorentz force flowmeter is a noncontact electromagnetic flow-measuring device based on exposing a flowing electrically conducting liquid to a magnetic field and measuring the force acting on the magnet system. The measured Lorentz force is proportional to the flow rate via a calibration coefficient which depends on the velocity distribution and magnetic field in liquid. In this paper, the influence of different velocity profiles on the calibration coefficient is investigated by using numerical simulations. The Lorentz forces are computed for laminar flows in closed and open rectangular channels, and the results are compared with the simplified case of a solid conductor moving at a constant velocity. The numerical computations demonstrate that calibration coefficients for solid bodies are always higher than for liquid metals. Moreover, it can be found that for some parameters the solid-body calibration coefficient is almost twice as high as for a liquid metal. These differences are explained by analyzing the patterns of the induced eddy currents and the spatial distributions of the Lorentz force density. The result provides a first step for evaluating the influence of the laminar velocity profiles on the calibration function of a Lorentz force flowmeter.  相似文献   

15.
Stair matrices and their generalizations are introduced. The definitions and some properties of the matrices were first given by Lu Hao. This class of matrices provide bases of matrix splittings for iterative methods. The remarkable feature of iterative methods based on the new class of matrices is that the methods are easily implemented for parallel computation. In particular, a generalization of the accelerated overrelaxation method (GAOR) is introduced. Some theories of the AOR method are extended to the generalized method to include a wide class of matrices. The convergence of the new method is derived for Hermitian positive definite matrices. Finally, some examples are given in order to show the superiority of the new method.  相似文献   

16.
In this paper,the author proves that, for a nonlinear heat conduction equation, there is no discontinuous solution. Some methods of solution for a nonlinear conduction equation are depicted. For a plane interface, the reflection and transmission of a heat wave are given by the method of images. The 1st order of approximation of this method is proved. Lastly, the prevention of superheated electrons is laser implosion of deuterium tritium gas sphere with a shell made of high Z material is interpreted.  相似文献   

17.
The Green’s function method is applied for the transient temperature of an annular fin when a phase change material (PCM) solidifies on it. The solidification of the PCMs takes place in a cylindrical shell storage. The thickness of the solid PCM on the fin varies with time and is obtained by the Megerlin method. The models are found with the Bessel equation to form an analytical solution. Three different kinds of boundary conditions are investigated. The comparison between analytical and numerical solutions is given. The results demonstrate that the significant accuracy is obtained for the temperature distribution for the fin in all cases.  相似文献   

18.
An improved precise integration method(IPIM) for solving the differential Riccati equation(DRE) is presented.The solution to the DRE is connected with the exponential of a Hamiltonian matrix,and the precise integration method(PIM) for solving the DRE is connected with the scaling and squaring method for computing the exponential of a matrix.The error analysis of the scaling and squaring method for the exponential of a matrix is applied to the PIM of the DRE.Based on the error analysis,the criterion for choosing two parameters of the PIM is given.Three kinds of IPIMs for solving the DRE are proposed.The numerical examples show that the IPIM is stable and gives the machine accuracy solutions.  相似文献   

19.
In this paper, we propose an instantaneous phase-stepping method for determining phase distribution of interference fringes utilizing a camera that is equipped with a micro-polarizer array on the sensor plane. An optical setup of polarization interferometry using a Mach–Zehnder interferometer with two polarizers is constructed. Light emerging from the interferometer is recorded using a camera that has a micro-polarizer array. This micro-polarizer array has four different optical axes. That is, an image obtained by the camera contains four types of information corresponding to four different optical axes of the polarizer. The four images separated from the image recorded by the camera are reconstructed using gray level interpolation. Subsequently, the distributions of the Stokes parameters that represent the state of polarization are calculated from the four images. The phase distribution of the interference fringe pattern produced by the Mach–Zehnder interferometer is then obtained from these Stokes parameters.The effectiveness of the proposed method is demonstrated by measuring a static carrier pattern and time-variant fringe patterns. It is emphasized that this method is applicable to time-variant phenomena because multiple exposures are unnecessary for sufficient data acquisition in the completion of the phase analysis.  相似文献   

20.
Nanoparticle transport and deposition in bends with circular cross-section are solved for different Reynolds numbers and Schmidt numbers. The perturbation method is used in solving the equations. The results show that the particle transport patterns are similar and independent of the particle size and other parameters when suspended nanoparticles flow in a straight tube. At the outside edge, particle deposition is the most intensive, while deposition at the inside edge is the weakest. In the upper and lower parts of the tube, depositions are approximately the same for different Schmidt numbers. Curvatures of tube, Reynolds number, and Schmidt number have second-order, forth-order, and first-order effects on the relative deposition efficiency, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号