首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在5~11MPa的范围内,利用恒容静态平衡法详细考察了CO2密度在0.542~0.590g/cm3范围的不同组成的超临界CO2+EtOH+CO+H2四元体系的压力和温度的变化规律,并测定了相应的临界温度和临界压力.模拟了超临界丙烯氢甲酰反应体系的相行为.结果发现,CO+H2加入量的增多可明显改变超临界CO2+EtOH+CO+H2四元体系的超临界性质,主要表现为该体系的临界温度随着CO和H2摩尔分数的增加而线性降低,临界压力随着CO和H2摩尔分数的增加而线性增加.在相同的CO和H2组成下,超临界四元体系的压力随着体系温度的增加而线性增加,并且p-T线的斜率基本相同.在相同温度下超临界四元体系的压力随着体系中CO和H2摩尔分数的增加线性增加,并且不同温度时的变化率基本相同.  相似文献   

2.
It was found that Dynol-604, a non-fluorous and no silicon-containing nonionic surfactant,was soluble in supercritical (SC) CO2. The phase behavior of SC CO2/Dynol-604/water system was studies. The results showed that one-phase water-in-CO2 microemulsions could be fromed. The solubilization of methyl orange in the microemulsions proved further the existence of water domain in the microemulsions.  相似文献   

3.
程庆彦  钟顺和 《化学通报》2004,67(7):517-523
负载型双核金属乙氧基配合物催化剂Cu2(OEt)2/SiO2采用表面改性法制备。运用滴定、IR、DSC和超临界反应技术对催化剂的表面结构、化学吸附性质和反应性能进行了研究。结果表明:负载型双核金属乙氧基配合物Cu2(OEt)2/SiO2中Cu”与载体SiO2表面O^2-以双齿配位形式键合,存在Cu2(OEt)2双核结构;二氧化碳在催化剂表面吸附形式形成桥式和乙氧碳酸酯基物种两种吸附态,丙烯则只有一种分子吸附态;在超临界的反应条件下,二氧化碳和丙烯在Cu2(OEt)2/SiO2催化剂上可以高选择性地合成甲基丙烯酸;反应物分子共吸附于催化剂表面,同一活性基元以及羧酸根与丙烯解离吸附态的形成是反应顺利进行的关键因素。  相似文献   

4.
Ecdysterone has been found in a great many plants and animals and has some valuable pharmaceutical properties. The present study was conducted to investigate optimal conditions for the extraction of the compound by supercritical fluid extraction from the roots of Achyranthes bidentata BL. An orthogonal array design (OAD), OA(9)(3(4)), was employed as a chemometric method for optimization of the extraction of ecdysterone from the herbal medicine. Four parameters, namely, pressure and temperature of the supercritical fluid, the dynamic extraction time, and the flow rate of dimethyl sulfoxide, were studied and optimized by a three-level OAD. Determinations of the extracts were performed by high-performance liquid chromatography. The effects of the parameters were studied using analysis of variance. The results shown that the yield of ecdysterone could be influenced by the four parameters to a similar degree. The yield for DMSO-modified supercritical CO(2) was in the range from 0.65 to 1.03 mg/g under the selected conditions. In comparison with methanol-modified supercritical CO(2 )and Soxhlet extraction, a higher yield was obtained when DMSO-modified supercritical CO(2) was used.  相似文献   

5.
Microporous poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)membranes following supercritical CO_2 induced phase separation process were prepared using four solvents.The solid electrolytes of PVDF-HFP were formed by microporous PVDF-HFP membranes filled and swollen by a liquid electrolyte.The effect of the solvents on the morphology and structure,electrolyte absorptions and lithium ionic conductivity of the activated membranes were investigated.It was approved that all the membrane had the simi...  相似文献   

6.
Bulk hierarchical anatase‐titania/cellulose composite sheets were fabricated by subjecting an ultrathin titania gel film pre‐deposited filter paper to a solvo‐co‐hydrothermal treatment by using titanium butoxide as the precursor to grow anatase‐titania nanocrystallites on the cellulose nanofiber surfaces. The titanium butoxide specie is firstly absorbed onto the nanofibers of the cellulose substance through a solvothermal process, which was thereafter hydrolyzed and crystallized upon the subsequent hydrothermal treatment, leading to the formation of fine anatase‐titania nanoparticles with sizes of 2–5 nm uniformly anchored on the cellulose nanofibers. The resulting anatase‐titania/cellulose composite sheet shows a significant photocatalytic performance towards degradation of a methylene blue dye, and introduction of silver nanoparticles into the composite sheet yields an Ag‐NP/anatase‐titania/cellulose composite material possessing excellent antibacterial activity against both Gram‐positive and Gram‐negative bacteria.  相似文献   

7.
Spherical particles were prepared from poly[2-(perfluorooctyl)ethyl acrylateco-acrylic acid] random copolymers (P(POA-co-AA)) by self-assembly in supercritical carbon dioxide (scCO2). The P(POA-co-AA) copolymers with 9:1, 8:2, 7:3, and 6:4 molar ratios of the POA/AA unit completely dissolved in scCO2, however, the solubility was dependent on the POA/AA ratio. The copolymer with the higher AA content had a lower solubility. The scanning electron microscopy (SEM) observations revealed that the spherical particles were obtained in a heterogeneous state at pressures lower than the cloud point pressure. Dynamic light scattering and 1H NMR studies demonstrated that the copolymers formed random copolymer micelles consisting of the shells of the CO2-philic POA units and the cores of the CO2-phobic AA units and main chains. It was found that the formation of spherical particles could be optimized by the manipulation of the CO2 pressure and temperature for the different compositions of the copolymers.  相似文献   

8.
The composition of essential oil extracted from Valeriana officinalis L. roots growing wild in Iran was studied by hydrodistillation and supercritical CO2 extraction. Forty-seven components representing 89.3% and 35 constituents varying from 86.1% to 95.1% of the oil obtained by hydrodistillation and supercritical CO2 were identified, respectively. The major components in the extracted oil from supercritical CO2 were isovaleric acid (18.7-41.8%), valerenic acid (8.2-11.8%), acetoxyvaleranone (5.6-9.6%), (Z)-valernyl acetate (4.5-6.5%), bornyl acetate (2.3-7.7%) and valerenol (3.7-5.2%), whereas by hydrodistillation were bornyl acetate (11.6%), valerenic acid (8.0%), (Z)-valernyl acetate (7.9%) and acetoxyvaleranone (7.6%). The analysis of the extracts was performed by capillary GC and GC/MS.  相似文献   

9.
The technique of hydrophobic ion pairing was used to solubilize the lipase from Candida rugosa in a fluorinated solvent, perfluoromethylcyclohexane (PFMC), in complex with a perfluoropolyether (PFPE) surfactant, KDP 4606. The enzyme-surfactant complex was determined to have a hydrodynamic diameter of 6.5 nm at atmospheric pressure by dynamic light scattering (DLS), indicating that a single lipase molecule is stabilized by surrounding surfactant molecules. The complex formed a highly stable colloidal dispersion in both liquid and supercritical carbon dioxide at high CO2 densities (>0.92 and 0.847 g/mL, respectively), with 4% by volume PFMC as a cosolvent, yielding a fluid that was orange, optically translucent, and very nearly transparent. DLS demonstrated aggregation of the enzyme-surfactant complexes in CO2 at 25 and 40 degrees C and various pressures (2000-5000 psia) with hydrodynamic diameters ranging from 50 to 200 nm. The mechanism by which the enzyme-surfactant particles aggregate was shown to be via condensation due to very low polydispersities as characterized by the size distribution moments. Interparticle interactions were investigated with respect to density and temperature, and it was shown that on decreasing the CO2 density, the particle size increased, and the stability against settling decreased. Particle size also decreased as the temperature was increased to 40 degrees C, at constant CO2 density. Nanoparticle aggregates of an enzyme-surfactant complex in CO2, which are nearly optically transparent and stable to settling, are a promising new alternative to previous types of dispersions of proteins in CO2 that either required water/CO2 microemulsions or were composed of large particles unstable to settling.  相似文献   

10.
The solvent strength and selectivity of supercritical fluids (SCF) can be greatly enhanced by addition of one or two entrainers into the system. The amount of entrainer added is usually less than 5% (mole fraction). However, even with such slight amount, solubility of organic solutes has been observed to increase by several orders magnitude[1]. Therefore, critical pressure and tem-perature data of these supercritical fluid + cosolvent systems are imperative for the reasonable design of effici…  相似文献   

11.
Various surface species originating from the reaction between CO2 and H2 over Al2O3-supported Pt, Pd, Rh, and Ru model catalysts were investigated by attenuated total reflection infrared (ATR-IR) spectroscopy under high-pressure conditions. Two different spectroscopic cells were used: a variable-volume view cell equipped with ATR-crystal and transmission IR windows (batch reactor) and a continuous-flow cell also equipped with a reflection element for ATR-IR spectroscopy. The study corroborated that CO formation from dense CO2 in the presence of hydrogen occurs over all Pt-group metals commonly used in heterogeneous catalytic hydrogenations in supercritical CO2 (scCO2). In the batch reactor cell, formation of CO was detected on all metals at 50 and 90 degrees C, with the highest rate on Pt. Additional surface species were observed on Pt/Al2O3 at 150 bar under static conditions. It seems that further reaction of CO with hydrogen is facilitated by the higher surface concentration at higher pressure. In the continuous-flow cell, CO coverage on Pt/Al2O3 was less prominent than that in the batch reactor cell. A transient experiment in the continuous-flow cell additionally revealed CO formation on Pt/Al2O3 at 120 bar after switching the feed from a H2-ethane to a H2-CO2 mixture. The in situ ATR-IR measurements indicate that CO formation in CO2-H2 mixtures is normally a minor side reaction during hydrogenation reactions on Pt-group metal catalysts, and dense ("supercritical") CO2 may be considered as a relatively "inert" solvent in many practical applications. However, blocking of specific sites on the metal surface by CO and consecutive products can affect structure sensitive hydrogenation reactions and may be at the origin of unexpected shifts in the product distribution.  相似文献   

12.
Small-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO2) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T=35 and 80 degrees C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from rho(CO2) approximately 0 to 0.9 gcm3. The intensity of scattering from CO2-saturated Vycor porous glass can be described by a two-phase model which suggests that CO2 does not adsorb on the pore walls and fills the pore space uniformly. In CO2-saturated aerogels an adsorbed phase is formed with a density substantially higher that of the bulk fluid, and neutron transmission data were used to monitor the excess adsorption at different pressures. The results indicate that adsorption of CO2 is significantly stronger in aerogels than in activated carbons, zeolites, and xerogels due to the extremely high porosity and optimum pore size of these materials. SANS data revealed the existence of a compressed adsorbed phase with the average density approximately 1.07 gcm3, close to the density corresponding to closely packed van der Waals volume of CO2. A three-phase model [W. L. Wu, Polymer 23, 1907 (1982)] was used to estimate the volume fraction phi3 of the adsorbed phase as a function of the fluid density, and gave phi3 approximately 0.78 in the maximum adsorption regime around rho(CO2) approximately 0.374 gcm3. The results presented in this work demonstrate the utility of SANS combined with the transmission measurements to study the adsorption of supercritical fluids in porous materials.  相似文献   

13.
For the first time, the study of a three-step extraction system of water/ionic liquid/supercritical CO2 has been performed. Extraction of trivalent lanthanum and europium from an aqueous nitric acid solution to a supercritical CO2 phase via an imidazolium-based ionic liquid phase is demonstrated, and extraction efficiencies higher than 87 % were achieved. The quantitative extraction is obtained by using different fluorinated beta-diketones with and without the addition of tri(n-butyl)phosphate. The complexation phenomenon occurring in the room-temperature ionic-liquid (RTIL) phase was evidenced by using luminescence spectroscopy.  相似文献   

14.
The solubility of testosterone, boldenone, androstenone, etiocholanolone, and epitestosterone are measured in pure supercritical CO2. Testosterone exhibited the highest solubility in supercritical CO2. The solubility of all steroids except epitestosterone increased by one order of magnitude with increasing pressure from 100 to 400 atm. Epitestosterone had the lowest solubility in supercritical CO2 and its solubility was not affected by pressure. The extraction efficiency of steroids from an aqueous saline environment exceeded 95%. Because of the partial solubility of water in supercritical CO2, the addition of a moisture trap after the aqueous vessel is necessary to prevent the plugging and deterioration of the gas chromatographic (GC) column. It is demonstrated that on-line supercritical fluid extraction-GC-mass spectrometry is feasible for the quantitative extraction and analysis of steroids from both saline and urine solutions. However, it is determined that the adsorbent vessel filled with Hydromatrix is not sufficient to trap all the moisture, and after 3 to 4 extractions, the GC column efficiency lowered.  相似文献   

15.
研究了经过40℃,8.0~14.0MPa的超临界二氧化碳溶胀后的6种聚合物LDPE、PP、PA6、EVA、PS和PU中的CO2解吸情况,模拟了聚合物中CO2的解吸规律,即以时间的自然指数递减规律,并根据Fick扩散定理从理论上推导出CO2在聚合物中的解吸方程,由解吸方程计算解吸扩散系数,结果表明CO2的解吸扩散系数数量级达10-7cm2/s,解吸扩散系数与CO2在聚合物中的浓度和温度以及解吸前聚合物在超临界二氧化碳中的压力有关。  相似文献   

16.
以超高分子量聚乙烯作为原料, 在超临界二氧化碳中通过热处理成功制备了聚合物微米球. 微球尺寸符合高斯分布, 并可以控制在较窄范围内, 微球表面多孔且内部中空. 微球的形成是恒温过程和超临界二氧化碳双重作用的结果. 降温过程导致聚合物溶解度降低, 超高分子量聚乙烯分子链析出结晶而形成微球, 内部包裹了少量二氧化碳; 温度进一步降低导致微球内外压力不平衡, 二氧化碳从空心球内部释放形成表面孔洞. 恒温结晶过程除了促使微球结晶度进一步提高外, 还可以使亚稳晶型单斜晶转化为稳定的正交晶.  相似文献   

17.
Mechanisms that control the extraction rates of essential oil from savory (Satureja hortensis) and polycyclic aromatic hydrocarbons (PAHs) from historically-contaminated soil with hot water and supercritical carbon dioxide were studied. The extraction curves at different solvent flow-rates were used to determine whether the extractions were limited primarily by the near equilibrium partitioning of the analyte between the matrix and solvent (i.e. partitioning thermodynamics, or the "elution" step) or by the rate of analyte desorption from the matrix (i.e. kinetics, or the "initial desorption" step). Two simple models were applied to describe the extraction profiles obtained with hot water and with supercritical CO2: (1) a model based solely on the thermodynamic distribution coefficient KD, which assumes that analyte desorption from the matrix is rapid compared to elution. and (2) a two-site kinetic model which assumes that the extraction rate is limited by the analyte desorption rate from the matrix, and is not limited by the thermodynamic (KD) partitioning that occurs during elution. For hot water extraction, the thermodynamic elution of analytes from the matrix was the prevailing mechanism as evidenced by the fact that extraction rates increased proportionally with the hot water flow-rate. This was also confirmed by the fact that simple removal calculations based on a single KD (for each essential oil compound) gave good fits to experimental data for flow-rates from 0.25 to 4 ml/min. In contrast, supercritical CO2 extraction showed only minimal dependence on flow-rate, and the simple KD model could only describe the initial 20-50% of the extraction. However, a simple two-site kinetic model gave a good fit for all CO2 flow-rates tested. The results of these investigations demonstrated that very simple models can be used to determine and describe extractions which are limited primarily by partitioning thermodynamics, or primarily by desorption kinetics. Furthermore, these results show that the time required for the recovery of essential oil from savory with hot water can be minimized by increasing flow-rate, with little change in the total volume of water required. In contrast, raising the flow-rate of supercritical CO2 has little effect on the mass of essential oils recovered per unit of time, indicating that optimal recovery of these compounds with supercritical CO2 (amount recovered for the lowest amount of CO2) requires longer extraction times rather than faster flow-rates.  相似文献   

18.
Several investigations on the extraction of dioxins from soil and fly ash with supercritical fluid have been reported; however, few of them describe the influence of components on the extraction. We extracted dioxins from eight samples with different values of organic carbon content and surface area with supercritical CO(2) at a temperature of 463 K, a pressure of 40 MPa, and using 10% toluene as an entrainer. We researched the influence of the characteristics of soil and fly ash on supercritical CO(2) extraction of dioxins. The results revealed that the extraction efficiencies of PCDD/DFs and PCBs were high for all soil samples, while that of fly ash samples decreased with the increase in organic carbon content and surface area. The extraction efficiencies of dioxins from four standard samples, activated carbon, humic acid, alumina, and florisil, were also examined. The results revealed that the extraction efficiencies were strongly influenced by activated carbon like components present in the samples.  相似文献   

19.
程庆彦  钟顺和 《应用化学》2003,20(11):1039-0
超临界反应;负载型催化剂;双核桥联配合物;配合物;超临界条件下CO2和丙烯直接合成甲基丙烯酸Ni2(OCH3)2/SiO2催化剂  相似文献   

20.
Hydroformylation of propylene has been carried out in supercritical CO2 + H2O and in supercritical propylene + H2O mixtures using Rh(acac)(CO)2 and triphenylphosphine trisulfonate trisodium salt (TPPTS), P(m-C6H4SO3Na)3, as catalyst. Visual observation of the reaction mixtures indicates that in both systems a single phase is present at supercritical temperatures and pressures so that the reaction occurs under homogeneous conditions. After reaction is complete, a biphasic system is formed when the pressure and temperature are reduced to ambient. This facilitates separation of the products in the organic phase and the rhodium catalyst in the aqueous phase. The rhodium concentration in the organic phase was found to be negligible (1.0 × 10−6 mg/ml). Furthermore, compared with traditional hydroformylation technology, the supercritical reactions also show better activity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号