首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Learning strategies can be used to improve the efficiency of virtual screening of very large databases. In these strategies new compounds to be screened are selected on the basis of the results obtained in previous stages, even if truly good ligands have not yet been identified. This approach requires that the scoring function used correctly predicts the energy and geometry of suboptimal complexes, i.e. weak complexes that are not the final solution of the screening but help direct the search toward the most productive regions of chemical space. We show that a small modification in the treatment of the solvation of polar atoms corrects the tendency of the original Autodock 3.0 scoring function to bury ligand polar atoms away from solvent, even if no complementary groups are present in the target and improves the performance of Autodock 3.0 and 4.0 in reproducing the experimental docking energies of weak complexes, resembling the suboptimal complexes encountered in the intermediate stages of virtual screening.  相似文献   

2.
In order to identify novel chemical classes of factor Xa inhibitors, five scoring functions (FlexX, DOCK, GOLD, ChemScore and PMF) were engaged to evaluate the multiple docking poses generated by FlexX. The compound collection was composed of confirmed potent factor Xa inhibitors and a subset of the LeadQuest screening compound library. Except for PMF the other four scoring functions succeeded in reproducing the crystal complex (PDB code: 1FAX). During virtual screening the highest hit rate (80%) was demonstrated by FlexX at an energy cutoff of -40 kJ/mol, which is about 40-fold over random screening (2.06%). Limited results suggest that presenting more poses of a single molecule to the scoring functions could deteriorate their enrichment factors. A series of promising scaffolds with favorable binding scores was retrieved from LeadQuest. Consensus scoring by pair-wise intersection failed to enrich the hit rate yielded by single scorings (i.e. FlexX). We note that reported successes of consensus scoring in hit rate enrichment could be artificial because their comparisons were based on a selected subset of single scoring and a markedly reduced subset of double or triple scoring. The findings presented in this report are based upon a single biological system and support further studies.  相似文献   

3.
A dataset of protein‐drug complexes with experimental binding energy and crystal structure were analyzed and the performance of different docking engines and scoring functions (as well as components of these) for predicting the free energy of binding and several ligand efficiency indices were compared. The aim was not to evaluate the best docking method, but to determine the effect of different efficiency indices on the experimental and predicted free energy. Some ligand efficiency indices, such as ΔG/W (Wiener index), ΔG/NoC (number of carbons), and ΔG/P (partition coefficient), improve the correlation between experimental and calculated values. This effect was shown to be valid across the different scoring functions and docking programs. It also removes the common bias of scoring functions in favor of larger ligands. For all scoring functions, the efficiency indices effectively normalize the free energy derived indices, to give values closer to experiment. Compound collection filtering can be done prior or after docking, using pharmacokinetic as well as pharmacodynamic profiles. Achieving these better correlations with experiment can improve the ability of docking scoring functions to predict active molecules in virtual screening. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

4.
In general, the docking scoring tends to have a size dependence related to the ranking of compounds. In this paper, we describe a novel method of parameter optimization for docking scores which reduce the size dependence and can efficiently discriminate active compounds from chemical databases. This method is based on a simplified theoretical model of docking scores which enables us to utilize large amounts of data of known active and inactive compounds for a particular target without requiring large computational resources or a complicated procedure. This method is useful for making scoring functions for the identification of novel scaffolds using the knowledge of active compounds for a particular target or a customized scoring function for an interesting family of drug targets.  相似文献   

5.
We have developed an iterative knowledge-based scoring function (ITScore) to describe protein-ligand interactions. Here, we assess ITScore through extensive tests on native structure identification, binding affinity prediction, and virtual database screening. Specifically, ITScore was first applied to a test set of 100 protein-ligand complexes constructed by Wang et al. (J Med Chem 2003, 46, 2287), and compared with 14 other scoring functions. The results show that ITScore yielded a high success rate of 82% on identifying native-like binding modes under the criterion of rmsd < or = 2 A for each top-ranked ligand conformation. The success rate increased to 98% if the top five conformations were considered for each ligand. In the case of binding affinity prediction, ITScore also obtained a good correlation for this test set (R = 0.65). Next, ITScore was used to predict binding affinities of a second diverse test set of 77 protein-ligand complexes prepared by Muegge and Martin (J Med Chem 1999, 42, 791), and compared with four other widely used knowledge-based scoring functions. ITScore yielded a high correlation of R2 = 0.65 (or R = 0.81) in the affinity prediction. Finally, enrichment tests were performed with ITScore against four target proteins using the compound databases constructed by Jacobsson et al. (J Med Chem 2003, 46, 5781). The results were compared with those of eight other scoring functions. ITScore yielded high enrichments in all four database screening tests. ITScore can be easily combined with the existing docking programs for the use of structure-based drug design.  相似文献   

6.
The Surflex flexible molecular docking method has been generalized and extended in two primary areas related to the search component of docking. First, incorporation of a small-molecule force-field extends the search into Cartesian coordinates constrained by internal ligand energetics. Whereas previous versions searched only the alignment and acyclic torsional space of the ligand, the new approach supports dynamic ring flexibility and all-atom optimization of docked ligand poses. Second, knowledge of well established molecular interactions between ligand fragments and a target protein can be directly exploited to guide the search process. This offers advantages in some cases over the search strategy where ligand alignment is guided solely by a “protomol” (a pre-computed molecular representation of an idealized ligand). Results are presented on both docking accuracy and screening utility using multiple publicly available benchmark data sets that place Surflex’s performance in the context of other molecular docking methods. In terms of docking accuracy, Surflex-Dock 2.1 performs as well as the best available methods. In the area of screening utility, Surflex’s performance is extremely robust, and it is clearly superior to other methods within the set of cases for which comparative data are available, with roughly double the screening enrichment performance.  相似文献   

7.
PMF is one of the major methods for protein identification using the MS technology. It is faster and cheaper than MS/MS. Although PMF does not differentiate trypsin-digested peptides of identical mass, which makes it less informative than MS/MS, current computational methods for PMF have the potential to improve its detection accuracy by better use of the information content in PMF spectra. We developed a number of new probability-based scoring functions for PMF protein identification based on the MOWSE algorithm. We considered a detailed distribution of matching masses in a protein database and peak intensity, as well as the likelihood of peptide matches to be close to each other in a protein sequence. Our computational methods are assessed and compared with other methods using PMF data of 52 gel spots of known protein standards. The comparison shows that our new scoring schemes have higher or comparable accuracies for protein identification in comparison to the existing methods. Our software is freely available upon request. The scoring functions can be easily incorporated into other proteomics software packages.  相似文献   

8.
Knowledge‐based scoring functions are widely used for assessing putative complexes in protein–ligand and protein–protein docking and for structure prediction. Even with large training sets, knowledge‐based scoring functions face the inevitable problem of sparse data. Here, we have developed a novel approach for handling the sparse data problem that is based on estimating the inaccuracies in knowledge‐based scoring functions. This inaccuracy estimation is used to automatically weight the knowledge‐based scoring function with an alternative, force‐field‐based potential (FFP) that does not rely on training data and can, therefore, provide an improved approximation of the interactions between rare chemical groups. The current version of STScore, a protein–ligand scoring function using our method, achieves a binding mode prediction success rate of 91% on the set of 100 complexes by Wang et al., and a binding affinity correlation of 0.514 with the experimentally determined affinities in PDBbind. The method presented here may be used with other FFPs and other knowledge‐based scoring functions and can also be applied to protein–protein docking and protein structure prediction. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
We present results of testing the ability of eleven popular scoring functions to predict native docked positions using a recently developed method (Ruvinsky and Kozintsev, J Comput Chem 2005, 26, 1089) for estimation the entropy contributions of relative motions to protein-ligand binding affinity. The method is based on the integration of the configurational integral over clusters obtained from multiple docked positions. We use a test set of 100 PDB protein-ligand complexes and ensembles of 101 docked positions generated by (Wang et al. J Med Chem 2003, 46, 2287) for each ligand in the test set. To test the suggested method we compared the averaged root-mean square deviations (RMSD) of the top-scored ligand docked positions, accounting and not accounting for entropy contributions, relative to the experimentally determined positions. We demonstrate that the method increases docking accuracy by 10-21% when used in conjunction with the AutoDock scoring function, by 2-25% with G-Score, by 7-41% with D-Score, by 0-8% with LigScore, by 1-6% with PLP, by 0-12% with LUDI, by 2-8% with F-Score, by 7-29% with ChemScore, by 0-9% with X-Score, by 2-19% with PMF, and by 1-7% with DrugScore. We also compared the performance of the suggested method with the method based on ranking by cluster occupancy only. We analyze how the choice of a clustering-RMSD and a low bound of dense clusters impacts on docking accuracy of the scoring methods. We derive optimal intervals of the clustering-RMSD for 11 scoring functions.  相似文献   

10.
AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed‐up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed‐up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

11.
12.
We present a docking method that uses a scoring function for protein-ligand docking that is designed to maximize the docking success rate for low-resolution protein structures. We find that the resulting scoring function parameters are very different depending on whether they were optimized for high- or low-resolution protein structures. We show that this docking method can be successfully applied to predict the ligand-binding site of low-resolution structures. For a set of 25 protein-ligand complexes, in 76% of the cases, more than 50% of ligand-contacting residues are correctly predicted (using receptor crystal structures where the binding site is unspecified). Using decoys of the receptor structures having a 4 A RMSD from the native structure, for the same set of complexes, in 72% of the cases, we obtain at least one correctly predicted ligand-contacting residue. Furthermore, using an 81-protein-ligand set described by Jain, in 76 (93.8%) cases, the algorithm correctly predicts more than 50% of the ligand-contacting residues when native protein structures are used. Using 3 A RMSD from native decoys, in all but two cases (97.5%), the algorithm predicts at least one ligand-binding residue correctly. Finally, compared to the previously published Dolores method, for 298 protein-ligand pairs, the number of cases in which at least half of the specific contacts are correctly predicted is more than four times greater.  相似文献   

13.
The Biomolecular Ligand Energy Evaluation Protocol (BLEEP) is a knowledge‐based potential derived from high‐resolution X‐ray structures of protein–ligand complexes. The performance of this potential in ranking the hypothetical structures resulting from a docking study has been evaluated using fifteen protein–ligand complexes from the Protein Data Bank. In the majority of complexes BLEEP was successful in identifying the native (experimental) binding mode or an alternative of low rms deviation (from the native) as the lowest in energy. Overall BLEEP is slightly better than the DOCK energy function in discriminating native‐like modes. Even when alternative binding modes rank lower than the native structure, a reasonable energy is assigned to the latter. Breaking down the BLEEP scores into the atom–atom contributions reveals that this type of potential is grossly dominated by longer range interactions (>5 Å), which makes it relatively insensitive to small local variations in the binding site. However, despite this limitation, the lack, at present, of accurate protein–ligand potentials means that BLEEP is a promising approach to improve the filtering of structures resulting from docking programs. Moreover, BLEEP should improve with the continuously increasing number of complexes available in the PDB. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 673–688, 2001  相似文献   

14.
We developed a new structure-based in-silico screening method using a negative image of a ligand-binding pocket and a multi-protein–compound interaction matrix. Based on the structure of the ligand pocket of the target protein, we designed a negative image, which consists of virtual atoms whose radii are close to those of carbon atoms. The virtual atoms fit the pocket ideally and achieve an optimal Coulomb interaction. A protein–compound docking program calculates the protein–compound interaction matrix for many proteins and many compounds including the negative image, which can be treated as a virtual compound. With specific attention to a vector of docking scores for a single compound with many proteins, we selected a compound whose score vector was similar to that of the negative image as a candidate hit compound. This method was applied to representative target proteins and showed high database enrichment with a relatively quick procedure.  相似文献   

15.
Performance of small molecule automated docking programs has conceptually been divided into docking -, scoring -, ranking - and screening power, which focuses on the crystal pose prediction, affinity prediction, ligand ranking and database screening capabilities of the docking program, respectively. Benchmarks show that different docking programs can excel in individual benchmarks which suggests that the scoring function employed by the programs can be optimized for a particular task. Here the scoring function of Smina is re-optimized towards enhancing the docking power using a supervised machine learning approach and a manually curated database of ligands and cross docking receptor pairs. The optimization method does not need associated binding data for the receptor-ligand examples used in the data set and works with small train sets. The re-optimization of the weights for the scoring function results in a similar docking performance with regard to docking power towards a cross docking test set. A ligand decoy based benchmark indicates a better discrimination between poses with high and low RMSD. The reported parameters for Smina are compatible with Autodock Vina and represent ready-to-use alternative parameters for researchers who aim at pose prediction rather than affinity prediction.  相似文献   

16.
17.
Summary A new simple empirical function has been developed that estimates the free energy of binding for a given protein-ligand complex of known 3D structure. The function takes into account hydrogen bonds, ionic interactions, the lipophilic protein-ligand contact surface and the number of rotatable bonds in the ligand. The dataset for the calibration of the function consists of 45 protein-ligand complexes. The new energy function reproduces the binding constants (ranging from 2.5·10-2 to 4·10-14 M, corresponding to binding energies between -9 and -76 kJ/mol) of the dataset with a standard deviation of 7.9 kJ/mol, corresponding to 1.4 orders of magnitude in binding affinity. The individual contributions to protein-ligand binding obtained from the scoring function are: ideal neutral hydrogen bond: -4.7 kJ/mol; ideal ionic interaction: -8.3 kJ/mol; lipophilic contact: -0.17 kJ/mol Å2; one rotatable bond in the ligand: +1.4 kJ/mol. The function also contains a constant contribution (+5.4 kJ/mol) which may be rationalized as loss of translational and rotational entropy. The function can be evaluated very fast and is therefore also suitable for application in a 3D database search or de novo ligand design program such as LUDI.  相似文献   

18.
《Mendeleev Communications》2022,32(6):735-738
Here we propose an over-the-hood docking method that compensates for systematic errors in the docking force fields. This method explicitly estimates the interaction energy of the ligand with the protein surface and uses it as a baseline to estimate the actual binding energy in the active site. It improves the accuracy of virtual screening in the LeadFinder package by up to 48%.  相似文献   

19.
This paper describes the development of a simple empirical scoringfunction designed to estimate the free energy of binding for aprotein–ligand complex when the 3D structure of the complex is knownor can be approximated. The function uses simple contact terms to estimatelipophilic and metal–ligand binding contributions, a simple explicitform for hydrogen bonds and a term which penalises flexibility. Thecoefficients of each term are obtained using a regression based on 82ligand–receptor complexes for which the binding affinity is known. Thefunction reproduces the binding affinity of the complexes with across-validated error of 8.68 kJ/mol. Tests on internal consistency indicatethat the coefficients obtained are stable to changes in the composition ofthe training set. The function is also tested on two test sets containing afurther 20 and 10 complexes, respectively. The deficiencies of this type offunction are discussed and it is compared to approaches by other workers.  相似文献   

20.
Finding novel lead molecules is one of the primary goals in early phases of drug discovery projects. However, structurally dissimilar compounds may exhibit similar biological activity, and finding new and structurally diverse lead compounds is difficult for computer algorithms. Molecular energy fields are appropriate for finding structurally novel molecules, but they are demanding to calculate and this limits their usefulness in virtual screening of large chemical databases. In our approach, energy fields are computed only once per superposition and a simple interpolation scheme is devised to allow coarse energy field lattices having fewer grid points to be used without any significant loss of accuracy. The resulting processing speed of about 0.25 s per conformation on a 2.4 GHz Intel Pentium processor allows the method to be used for virtual screening on commonly available desktop machines. Moreover, the results indicate that grid-based superposition methods could be efficiently used for the virtual screening of compound libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号