共查询到14条相似文献,搜索用时 62 毫秒
1.
微加工芯片式流通池在顺序注射可更新表面反射光谱检测中的应用 总被引:1,自引:0,他引:1
提出了一种以湿法蚀刻技术制备的用于流动注射(FI)或顺序注射(SI)进样可更新表面检测的芯片式流通池,并将此流通池与SI系统及检测器相匹配,用于顺序注射可更新表面(SI-RST)反射光谱法检测。流通池由两片玻璃封接而成,流通池通道蚀刻在玻璃基片上。流通池通过多股双岔光纤分别与光源、检测器相耦合,以实现对微珠表面的反射光谱法检测。将此SI-RST反射光谱法检测系统用于对锌的检测,并测定人发试样中微量锌的含量。 相似文献
2.
3.
微流控芯片(Microfluidic chips)是微全分析系统(μTAS)研究中最为活跃的领域,在仪器微型化方面展现出很多的优点[1].化学发光由于其自身的特性在微芯片检测中应用逐渐增多[2,3]. 相似文献
4.
采用芯片式流通池作为非均相免疫反应和原位固相荧光检测的场所,用双岔光纤将芯片式流通池与荧光光度计耦联,以双抗夹心式非均相免疫反应的模式,研究建立了测定人血清中IgG的顺序注射可更新表面非均相免疫分析新方法. 相似文献
5.
流动注射-可更新表面技术进展 总被引:5,自引:0,他引:5
概述了流动注射-可更新表面技术的进展。介绍了该技术的原理、仪器发展及其在免疫分析、生物配位作用检测、细胞功能检测、分离与预浓集等领域的应用。参考文献27篇。 相似文献
6.
顺序注射可更新表面固相荧光免疫法测定人血清中免疫球蛋白G 总被引:2,自引:0,他引:2
建立了采用芯片式微型流通池的测定人血清中免疫球蛋白G(IgG)的顺序注射可更新表面非均相荧光免疫分析法。将羊抗人IgG抗体固定于包被有蛋白A的Sephamse CL4B凝胶微珠,然后制备成固相抗体。用标记FITC的抗人IgG抗体作为第二抗体。固相抗体、血清试样和荧光标记第二抗体由顺序注射系统注入芯片式微型流通池,并在其中进行免疫反应生成夹心式抗体.抗原荧光复合物。荧光分光光度计通过光纤与流通池耦合测定截留于流通池中的抗体一抗原复合物荧光强度。一次测定完成后,微珠即被排出流通池。流通池经缓冲液清洗后即可进行下一次测定。体系经优化后,检出限为0.1mg/L IgG,分析速率达到11次/h。3.9mg/L IgG的日内和日间精密度(RSD)分别为1.7%和5.2%;校正曲线的线性范围为0.3—7.0mg/L IgG。所建立的方法已成功地应用于人血清中IgG的测定。 相似文献
7.
8.
运用顺序注射分析技术,完成了样品的在线预处理,并采用固定化酶化学发光检测法测定甲醇的浓度,建立了一种在线监测甲醇酵母发酵诱导阶段发酵液中甲醇浓度的新方法。在选定的最佳条件下,甲醇浓度在0%~1.0%(V/V)范围内与化学发光强度呈良好的线性关系(R=0.9995),相对标准偏差(RSD)为1.9%(n=11),72 h内RSD为5.0%(0.2%甲醇溶液)。该法可在线自动完成过滤、稀释、测定等操作,分析速度快,长期稳定性高,能满足在线监测甲醇酵母发酵液中甲醇浓度的要求。 相似文献
9.
WANG Jian-ya FANG Zhao-lun . Research Center for Analytical Sciences Northeastern University Shenyang P. R. China . School of Petrochemical Engineering Shenyang University of Technology Shenyang P. R. China 《高等学校化学研究》2006,22(3):287-291
Introduction Determinationofglucoseisrequiredinmedicine industry,foodindustry,clinicaldiagnosisaswellas variousresearchfields.Therefore,intensiveefforts havebeendirectedtothedevelopmentofanalytical methodsfordeterminationofglucose,suchasthose basedonbiose… 相似文献
10.
11.
Paraskevas D. Tzanavaras Demetrius G. Themelis Anastasios Economou Georgios Theodoridis 《Mikrochimica acta》2003,142(1-2):55-62
Two new simple and rapid methods are reported for the accurate and precise spectrophotometric determination of captopril
(CPL) using flow (FI) and sequential injection (SI) analysis. The methods are based on the fast oxidation of CPL by Fe(III).
The produced Fe(II) reacts with 2,2′-dipyridyl-2-pyridylhydrazone (DPPH) in acidic medium to form a colored complex which
is monitored spectrophotometrically at 535 nm. Both methods allow the determination of the analyte up to 1000 mg L−1 at a sampling rate of 120 and 60 injections per hour for FI and SI, respectively. The methods are very precise [s
r=0.8 and 1.2% at 500 mg L−1 CPL (n=12) for FI and SI, respectively] and the 3σ detection limits (c
L=4.0 and 7.0 mg L1, respectively) are quite satisfactory. Their application to a variety of anti-hypertensive commercial pharmaceutical formulations
showed excellent results (relative errors, e
r, < ± 1.6% in all cases compared to an official HPLC method), while common pharmaceutical excipients were found not to interfere.
Recovery experiments further verified the accuracy of the developed methods, as the percent recoveries were in the range of
98.1–102.5%.
Author for correspondence. E-mail: themelis@chem.auth.gr
Received May 9, 2002; accepted January 8, 2003
Published online May 5, 2003 相似文献
12.
《Analytical letters》2012,45(6):949-964
Abstract This work describes an attempt to have a flow injection analysis (FIA) system for Orciprenaline with potentiometric and spectrophotometric detectors working sequentially. The potentiometric detection was performed using an orciprenaline ion-selective electrode made of orciprenaline ion-associate with phosphotungstic acid incorporated in a PVC matrix membrane, followed by sequential spectrophotometric detection of the same sample using the reaction of orciprenaline with phosphomolybdic acid in alkaline medium and measurement at 670 nm using a USB2000 fiber-optic spectrophotometer. The method was applied and validated for the assay of different samples that are 1.0 × 10?2–1.0 × 10?7 M orciprenaline, and the recovery values for Alupent® tablets, plasma and urine sample ranged from 99.39–100.93, 99.87–100.57, and 98.83–100.64 respectively for the potentiometric detector and 99.66–100.58, 99.78–100.69 and 99.12–100.92 respectively for the sequential spectrophotometric detector. It was found that using the double detection system compensated for both the unselectivity of the spectrophotometric method and the low detection limit of the potentiometric method (6.3 × 10?4 M). Although two detectors were used in the measurements, the method is still very simple to design and apply, in addition to being rapid and less expensive than other more sophisticated techniques applied in the literature and can therefore be used for other pharmaceutical compounds as well. 相似文献
13.
流动注射分光光度法测定亚硝酸盐仪器的研制 总被引:2,自引:0,他引:2
设计了亚硝酸盐流动注射自动在线监测仪,并研究了仪器的最佳测试条件.先将亚硝酸盐与对氨基苯磺酰胺重氮化,再与N-(1-萘基)乙二胺盐酸盐偶合,形成玫瑰红色的偶氮染料,在光程为60mm、光源为540nm的流通池内检测.实验发现最佳磺胺质量浓度为40g/L,N-(1-萘基)乙二胺盐酸盐质量浓度为0.6g/L,最佳采样量为300μL,反应管最佳长度为3m.亚硝酸盐的线性范围为10~1200μg/L,检出限为4.78μg/L,Rsd为1.02%(n=11),实际水样的加标回收率在96.5%~106.2%之内.本仪器消耗试剂量少、测定快速、灵敏、抗干扰能力强,适宜于现场即时监测. 相似文献
14.