首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, by solving the relaxed quasiconcave programming problem in outcome space, a new global optimization algorithm for convex multiplicative programming is presented. Two kinds of techniques are employed to establish the algorithm. The first one is outer approximation technique which is applied to shrink relaxation area of quasiconcave programming problem and to compute appropriate feasible points and to raise the capacity of bounding. And the other one is branch and bound technique which is used to guarantee global optimization. Some numerical results are presented to demonstrate the effectiveness and feasibility of the proposed algorithm.  相似文献   

3.
On the convergence of global methods in multiextremal optimization   总被引:2,自引:0,他引:2  
A general class of derivative-free optimization procedures is presented including the corresponding convergence theory. This theory turns out to be very constructive, in the sense that the convergence conditions not only can be verified easily for many existing algorithms, but also allow one to construct new procedures. It is shown that popular methods such as branch-and-bound concepts, Pintér's general class of procedures, the algorithms of Pijavskii, Shubert, and Mladineo, and the approach of Zheng and Galperin can not only be subsumed under this class of methods, but also partly be improved by regarding them within the framework presented.  相似文献   

4.
Based on a review of existing algorithms, a general branch-and-bound concept in global optimization is presented. A sufficient and necessary convergence condition is established, and a broad class of realizations is derived that include existing and several new approaches for concave minimization problems.  相似文献   

5.
In Ref. 1, a general class of branch-and-bound methods was proposed by Horst for solving global optimization problems. One of the main contributions of Ref. 1 was the opportunity of handling partition elements whose feasibility is not known. Deletion-by-infeasibility rules were presented for problems where the feasible set is convex, is defined by finitely many convex and reverse convex constraints, or is defined by Lipschitzian inequalities. In this note, we propose a new deletion-by-infeasibility rule for problems whose feasible set is defined by functions representable as differences of convex functions.This research was supported in part by the Hungarian National Research Foundation, Grant OTKA No. 2568.  相似文献   

6.
This technical comment refers to the discussion of strong consistency of several bounding procedures in Lemma 2.1 and Proposition 2.1 of Ref. 1. A necessary clarification is given of the notion of convergence q in Lemma 2.1, and a derivation of Proposition 2.1 is presented that includes a new and simple consistency proof of the classical bounding by convex envelopes used in many branch-and-bound procedures.  相似文献   

7.
A decomposition approach is proposed for minimizing biconcave functions over polytopes. Important special cases include concave minimization, bilinear and indefinite quadratic programming for which new algorithms result. The approach introduces a new polyhedral partition and combines branch-and-bound techniques, outer approximation, and projection of polytopes in a suitable way.The authors are indebted to two anonymous reviewers for suggestions which have considerably improved this article.  相似文献   

8.
A class of branch-and-bound methods is proposed for minimizing a quasiconvex-concave function subject to convex and quasiconvex-concave inequality constraints. Several important special cases where the subproblems involved by the bounding-and-branching operations can be solved quite effectively include certain d.c. programming problems, indefinite quadratic programming with one negative eigenvalue, affine multiplicative problems, and fractional multiplicative optimization.This research was accomplished while the second author was a Fellow of the Alexander von Humboldt Foundation at the University of Trier, Trier, Germany.  相似文献   

9.
In this paper, we present a novel global optimisation approach for the general solution of multi-parametric mixed integer linear programs (mp-MILPs). We describe an optimisation procedure which iterates between a (master) mixed integer nonlinear program and a (slave) multi-parametric program. Moreover, we explain how to overcome the presence of bilinearities, responsible for the non-convexity of the multi-parametric program, in two classes of mp-MILPs, with (i) varying parameters in the objective function and (ii) simultaneous presence of varying parameters in the objective function and the right-hand side of the constraints. Examples are provided to illustrate the solution steps.  相似文献   

10.
This article presents an algorithm for globally solving a linear program (P) that contains several additional multiterm multiplicative constraints. To our knowledge, this is the first algorithm proposed to date for globally solving Problem (P). The algorithm decomposes the problem to obtain a master problem of low rank. To solve the master problem, the algorithm uses a branch-and-bound scheme where Lagrange duality theory is used to obtain the lower bounds. As a result, the lower-bounding subproblems in the algorithm are ordinary linear programs. Convergence of the algorithm is shown and a solved sample problem is given.  相似文献   

11.
A polyhedral branch-and-cut approach to global optimization   总被引:4,自引:0,他引:4  
A variety of nonlinear, including semidefinite, relaxations have been developed in recent years for nonconvex optimization problems. Their potential can be realized only if they can be solved with sufficient speed and reliability. Unfortunately, state-of-the-art nonlinear programming codes are significantly slower and numerically unstable compared to linear programming software.In this paper, we facilitate the reliable use of nonlinear convex relaxations in global optimization via a polyhedral branch-and-cut approach. Our algorithm exploits convexity, either identified automatically or supplied through a suitable modeling language construct, in order to generate polyhedral cutting planes and relaxations for multivariate nonconvex problems. We prove that, if the convexity of a univariate or multivariate function is apparent by decomposing it into convex subexpressions, our relaxation constructor automatically exploits this convexity in a manner that is much superior to developing polyhedral outer approximators for the original function. The convexity of functional expressions that are composed to form nonconvex expressions is also automatically exploited.Root-node relaxations are computed for 87 problems from globallib and minlplib, and detailed computational results are presented for globally solving 26 of these problems with BARON 7.2, which implements the proposed techniques. The use of cutting planes for these problems reduces root-node relaxation gaps by up to 100% and expedites the solution process, often by several orders of magnitude.The research was supported in part by ExxonMobil Upstream Research Company, the National Science Foundation under awards DMII 0115166 and CTS 0124751, and the Joint NSF/NIGMS Initiative to Support Research in the Area of Mathematical Biology under NIH award GM072023.  相似文献   

12.
A crucial problem for many global optimization methods is how to handle partition sets whose feasibility is not known. This problem is solved for broad classes of feasible sets including convex sets, sets defined by finitely many convex and reverse convex constraints, and sets defined by Lipschitzian inequalities. Moreover, a fairly general theory of bounding is presented and applied to concave objective functions, to functions representable as differences of two convex functions, and to Lipschitzian functions. The resulting algorithms allow one to solve any global optimization problem whose objective function is of one of these forms and whose feasible set belongs to one of the above classes. In this way, several new fields of optimization are opened to the application of global methods.  相似文献   

13.
In this comment, we preset a minor mistake in typing which is made in “A new local and global optimization method for mixed integer quadratic programming problems” by G.Q. Li et al.  相似文献   

14.
In many global optimization problems motivated by engineering applications, the number of function evaluations is severely limited by time or cost. To ensure that each evaluation contributes to the localization of good candidates for the role of global minimizer, a sequential choice of evaluation points is usually carried out. In particular, when Kriging is used to interpolate past evaluations, the uncertainty associated with the lack of information on the function can be expressed and used to compute a number of criteria accounting for the interest of an additional evaluation at any given point. This paper introduces minimizers entropy as a new Kriging-based criterion for the sequential choice of points at which the function should be evaluated. Based on stepwise uncertainty reduction, it accounts for the informational gain on the minimizer expected from a new evaluation. The criterion is approximated using conditional simulations of the Gaussian process model behind Kriging, and then inserted into an algorithm similar in spirit to the Efficient Global Optimization (EGO) algorithm. An empirical comparison is carried out between our criterion and expected improvement, one of the reference criteria in the literature. Experimental results indicate major evaluation savings over EGO. Finally, the method, which we call IAGO (for Informational Approach to Global Optimization), is extended to robust optimization problems, where both the factors to be tuned and the function evaluations are corrupted by noise.  相似文献   

15.
Primal-relaxed dual global optimization approach   总被引:8,自引:0,他引:8  
A deterministic global optimization approach is proposed for nonconvex constrained nonlinear programming problems. Partitioning of the variables, along with the introduction of transformation variables, if necessary, converts the original problem into primal and relaxed dual subproblems that provide valid upper and lower bounds respectively on the global optimum. Theoretical properties are presented which allow for a rigorous solution of the relaxed dual problem. Proofs of -finite convergence and -global optimality are provided. The approach is shown to be particularly suited to (a) quadratic programming problems, (b) quadratically constrained problems, and (c) unconstrained and constrained optimization of polynomial and rational polynomial functions. The theoretical approach is illustrated through a few example problems. Finally, some further developments in the approach are briefly discussed.The authors gratefully acknowledge financial support from National Science Foundation Presidential Young Investigator Award CBT-88-57013. The authors are also grateful to Drs. F. A. Al-Khayyal, B. Jaumard, P. M. Pardalos, and H. D. Sherali for helpful comments on an earlier draft of this paper.  相似文献   

16.
One of the most effective numerical techniques for solving nonlinear programming problems is the sequential quadratic programming approach. Many large nonlinear programming problems arise naturally in data fitting and when discretization techniques are applied to systems described by ordinary or partial differential equations. Problems of this type are characterized by matrices which are large and sparse. This paper describes a nonlinear programming algorithm which exploits the matrix sparsity produced by these applications. Numerical experience is reported for a collection of trajectory optimization problems with nonlinear equality and inequality constraints.The authors wish to acknowledge the insightful contributions of Dr. William Huffman.  相似文献   

17.
A global optimization procedure is proposed to find a line in the Euclidean three-dimensional space which minimizes the sum of distances to a given finite set of three-dimensional data points.Although we are using similar techniques as for location problems in two dimensions, it is shown that the problem becomes much harder to solve. However, a problem parameterization as well as lower bounds are suggested whereby we succeeded in solving medium-size instances in a reasonable amount of computing time.  相似文献   

18.
Global optimization problems with a few variables and constraints arise in numerous applications but are seldom solved exactly. Most often only a local optimum is found, or if a global optimum is detected no proof is provided that it is one. We study here the extent to which such global optimization problems can be solved exactly using analytical methods. To this effect, we propose a series of tests, similar to those of combinatorial optimization, organized in a branch-and-bound framework. The first complete solution of two difficult test problems illustrates the efficiency of the resulting algorithm. Computational experience with the programbagop, which uses the computer algebra systemmacsyma, is reported on. Many test problems from the compendiums of Hock and Schittkowski and others sources have been solved.The research of the first and the third authors has been supported by AFOSR grants #0271 and #0066 to Rutgers University. Research of the second author has been supported by NSERC grant #GP0036426 and FCAR grants #89EQ4144 and #90NC0305.  相似文献   

19.
In this paper, the Bayesian methods of global optimization are considered. They provide the minimal expected deviation from the global minimum. It is shown that, using the Bayesian methods, the asymptotic density of calculations of the objective function is much greater around the point of global minimum. The relation of this density to the parameters of the method and to the function is defined.Algorithms are described which apply the Bayesian methods to problems with linear and nonlinear constraints. The Bayesian approach to global multiobjective optimization is defined. Interactive procedures and reduction of multidimensional data in the case of global optimization are discussed.  相似文献   

20.
The paper presents a bi-objective robust program to design a cost-responsiveness efficient emergency medical services (EMS) system under uncertainty. The proposed model simultaneously determines the location of EMS stations, the assignment of demand areas to EMS stations, and the number of EMS vehicles at each station to balance cost and responsiveness. We develop a robust counterpart approach to cope with the uncertain parameters in the EMS system. Extensive numerical studies are performed to demonstrate the benefits of our robust optimization approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号