首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Continuous chromatographic protein refolding   总被引:2,自引:0,他引:2  
Column-based protein refolding requires a continuous processing capability if reasonable quantities of protein are to be produced. A popular column-based method, size-exclusion chromatography (SEC) refolding, employs size-exclusion matrices to separate unfolded protein from denaturant, thus refolding the protein. In this work, we conduct a comparison of SEC refolding with refolding by batch dilution, using lysozyme as a model protein. Lysozyme refolding yield was found to be extremely sensitive to the chemical composition of the refolding buffer and particularly the concentration of dithiothreitol (DTT) introduced from the denatured protein mixture. SEC refolding was not adversely affected by DTT carry-over as small contaminants in the denatured solution are separated from protein during the refolding operation. We also find that, contrary to previous reports, size-exclusion refolding on batch columns leads to refolding yields slightly better than batch dilution refolding yields at low protein concentrations but this advantage disappears at higher protein concentrations. As batch-mode chromatography would be the limiting step in a column based refolding downstream process, the batch column refolding method was translated to a continuously operating chromatography system (preparative continuous annular chromatography, P-CAC). It was shown that the P-CAC elution profile is similar to that of a stationary column, making scale-up and translation to P-CAC relatively simple. Moreover, it was shown that high refolding yields (72%) at high protein concentration (>1 mg ml(-1)) could be obtained.  相似文献   

2.
Protein refolding at high concentrations always leads to aggregation, which limits commercial application. An ion-exchange chromatography process with gradient changes in urea concentration and pH was developed to refold denatured lysozyme at high concentration. After adsorption of the denatured protein onto an ion-exchange medium, elution was carried out in combination with a gentle decrease in urea concentration and elevation of pH. Protein would gradually refold along the column with high activity yield. Denatured and reduced lysozyme at 40 mg/ml was loaded into a column filled with SP Sepharose Fast Flow, resulting in 95% activity recovery and 98% mass yield within a short period of time.  相似文献   

3.
The efficient refolding of recombinant proteins produced in the form of inclusion bodies (IBs) in Escherichia coli still is a complicated experimental problem especially for large hydrophobic highly disulfide-bonded proteins. The aim of this work was to develop highly efficient and simple refolding procedure for such a protein. The recombinant C-terminal fragment of human alpha-fetoprotein (rAFP-Cterm), which has molecular weight of 26 kDa and possesses 6 S-S bonds, was expressed in the form of IBs in E. coli. The C-terminal 7× His tag was introduced to facilitate protein purification and refolding. The refolding procedure of the immobilized protein by immobilized metal chelating chromatography (IMAC) was developed. Such hydrophobic highly disulfide-bonded proteins tend to irreversibly bind to traditionally used agarose-based matrices upon attempted refolding of the immobilized protein. Indeed, the yield of rAFP-Cterm upon its refolding by IMAC on agarose-based matrix was negligible with bulk of the protein irreversibly stacked to the resin. The key has occurred to be using IMAC based on silica matrix. This increased on-resin refolding yield of the target protein from almost 0 to 60% with purity 98%. Compared to dilution refolding of the same protein, the productivity of the developed procedure was two orders higher. There was no need for further purification or concentration of the renatured protein. The usage of silica-based matrix for the refolding of immobilized proteins by IMAC can improve and facilitate the experimental work for difficult-to-refold proteins.  相似文献   

4.
Refolding of proteins must be performed under very dilute conditions to overcome the competing aggregation reaction, which has a high reaction order. Refolding on a chromatography column partially prevents formation of the intermediate form prone to aggregation. A chromatographic refolding procedure was developed using an autoprotease fusion protein with the mutant EDDIE from the Npro autoprotease of pestivirus. Upon refolding, self-cleavage generates a target peptide with an authentic N-terminus. The refolding process was developed using the basic 1.8-kDa peptide sSNEVi-C fused to the autoprotease EDDIE or the acidic peptide pep6His, applying cation and anion exchange chromatography, respectively. Dissolved inclusion bodies were loaded on cation exchange chromatographic resins (Capto S, POROS HS, Fractogel EMD SO3, UNOsphere S, SP Sepharose FF, CM Sepharose FF, S Ceramic HyperD F, Toyopearl SP-650, and Toyopearl MegaCap II SP-550EC). A conditioning step was introduced in order to reduce the urea concentration prior to the refolding step. Refolding was initiated by applying an elution buffer containing a high concentration of Tris–HCl plus common refolding additives. The actual refolding process occurred concurrently with the elution step and was completed in the collected fraction. With Capto S, POROS HS, and Fractogel SO3, refolding could be performed at column loadings of 50 mg fusion protein/ml gel, resulting in a final eluate concentration of around 10–15 mg/ml, with refolding and cleavage step yields of around 75%. The overall yield of recovered peptide reached 50%. Similar yields were obtained using the anion exchange system and the pep6His fusion peptide. This chromatographic refolding process allows processing of fusion peptides at a concentration range 10- to 100-fold higher than that observed for common refolding systems.  相似文献   

5.
α-Fetoprotein (AFP) is a prospective biopharmaceutical candidate currently undergoing advanced-stage clinical trials for autoimmune indications. The high AFP expression yields in the form of inclusion bodies in Escherichia coli renders the inclusion body route potentially advantageous for process scale commercial manufacture, if high-throughput refolding can be achieved. This study reports the successful development of an ‘anion-exchange chromatography’-based refolding process for recombinant human AFP (rhAFP), which carries the challenges of contaminant spectrum and molecule complexity. rhAFP was readily refolded on-column at rhAFP concentrations unachievable with dilution refolding due to viscosity and solubility constraints. DEAE-FF functioned as a refolding enhancer to achieve rhAFP refolding yield of 28% and product purity of 95% in 3 h, at 1 mg/ml protein refolding concentration. Optimization of both refolding and chromatography column operation parameters (i.e. resin chemistry, column geometry, redox potential and feed conditioning) significantly improved rhAFP refolding efficiency. Compared to dilution refolding, on-column rhAFP refolding productivity was 9-fold higher, while that of off-column refolding was more than an order of magnitude higher. Successful demonstration that a simple anion-exchange column can, in a single step, readily refold and purify semi-crude rhAFP comprising 16 disulfide bonds, will certainly extend the application of column refolding to a myriad of complex industrial inclusion body proteins.  相似文献   

6.
Wang F  Liu Y  Li J  Ma G  Su Z 《Journal of chromatography. A》2006,1115(1-2):72-80
Dilution refolding of consensus interferon (C-IFN) had a limit on final concentration not exceeding 0.1 mg ml(-1) in order to achieve specific activity of 2.2x10(8) U mg(-1). Addition of polyethylene glycol (PEG) only gave a marginal improvement on the specific activity. Hydrophobic interaction chromatography (HIC) was tried but a simple step-wise elution could not refold the protein. Successful refolding was achieved by gradient elution with the decreasing of guanidine-hydrochloride (guanidine-HCl) concentration. The column was packed with a commercially available HIC medium that was designed for protein separation. Polyethylene glycol was found to possess better effect on the column than in the dilution for promotion of correct refolding, especially in gradient mode. A novel dual-gradient strategy, consisting of decreasing guanidine-HCl concentration and increasing PEG concentration, was developed to enhance the refolding yield. Denatured C-IFN was allowed to adsorb and elute from the HIC column through a gradually changed solution environment. Compared with dilution refolding, the gradient HIC process, in the presence of PEG, gave about 2.6-folds of increase in specific activity, 30% increase in soluble protein recovery. Partial purification was also achieved simultaneously.  相似文献   

7.
Minichaperone sht GroEL191-345 was covalently coupled to NHS-activated Sepharose Fast Flow gel. Refolding of recombinant human interferon gamma (rhIFN-gamma) was carried out on a chromatographic column packed with immobilized minichaperone. The effects of salt concentration, urea concentration gradient, elution flow rate and protein loading on the refolding efficiency were investigated. The results indicated that immobilized sht GroEL191-345 chromatography was an effective protocol for the refolding of rhIFN-gamma. When loading 100 microl denatured rhIFN-gamma (17.8 mg/ml), the protein mass recovery and total activity obtained in this optimal process reached 74.25% and 6.74 x 10(6)IU/ml, respectively with the immobilized minichaperone column which was reused for 10 times with 25% decrease of renaturation capacity.  相似文献   

8.
将氧化还原型谷胱甘肽(GSH/GSSG)共价键合到色谱固定相上, 实现了对变性核糖核酸酶(RNase)的复性. 实验发现, 谷胱甘肽键合柱具有典型的弱阳离子交换性质, 在离子交换(IEC)模式下能够对4种标准蛋白进行基线分离, 且具有较高的柱效. 当蛋白浓度为5 mg/mL, 流速为0.2 mL/min时, 在流动相中不加GSH/GSSG的条件下, GSH/GSSG柱对变性核糖核酸酶的活性回收率可达(39.5±3.8)%, 而普通IEC柱对变性核糖核酸酶的活性回收率几乎为0, 说明其对变性蛋白二硫键的正确对接具有明显的促进作用; 在收集液中加入GSH/GSSG后, 其活性回收率可达到(81.5±4.3)%. 本文结果对蛋白折叠液相色谱法的发展及降低蛋白复性成本具有一定的应用价值.  相似文献   

9.
10.
Lysozyme refolding with immobilized GroEL column chromatography   总被引:4,自引:0,他引:4  
A refolding chromatography with immobilized molecular chaperonin GroEL was studied for the reactivation of denatured-reduced lysozyme. The effect of denaturant concentration (guanidine hydrochloride, 0.1-1.5 M) in the elution buffer, the elution flow-rate, and the loading concentration and volume of the substrate protein on the reactivation yield was studied. All the operating parameters showed minor effects on the recovery yield of lysozyme mass, which remained at 90-100%, but exhibited relatively notable influences on the specific activity of the recovered lysozyme. For example, there existed an optimum denaturant concentration of about 1 M at which the highest yield of specific activity (up to 97%) was obtained. Using the immobilized GroEL column, 3 ml of the lysozyme (1 mg/ml) per batch could be refolded at an overall yield of 81%, which corresponded to a refolding productivity of 54 mg per 1 gel per h. At comparable reactivation yields (over 80%), this value of productivity was over four-times larger as that of the size-exclusion refolding chromatography reported previously (12 mg per 1 gel per h), indicating the advantage of the present system for producing a high throughput in protein refolding operations.  相似文献   

11.
A mechanism for size-exclusion chromatography-based protein refolding is described. The model considers the steps of loading the denatured protein onto a gel filtration column, and protein elution. The model predictions are compared with results of refolding lysozyme (10 and 20 mg/ml) using Superdex 75 HR. The main collapse in protein structure occurred immediately after loading, where the partition coefficient of unfolded lysozyme increased from 0.1 to 0.48 for the partially folded molecule. Use of a refolding buffer as the mobile phase resulted in complete refolding of lysozyme; this eluted at an elution volume of 15.6 ml with a final partition coefficient of 0.54. The model predicted the elution volume of refolded lysozyme at 19.3 ml.  相似文献   

12.
Continuous matrix-assisted refolding of proteins   总被引:7,自引:0,他引:7  
A refolding reactor was developed for continuous matrix-assisted refolding of proteins. The reactor was composed of an annular chromatography system and an ultrafiltration system to recycle aggregated proteins produced during the refolding reaction. The feed solution containing the denatured protein was continuously fed to the rotating bed perfused with buffer promoting folding of the protein. As the protein passed through the column, it was separated from chaotropic and reducing agents and the refolding process took place. Native proteins and aggregates could be continuously separated due to different molecular size. The exit stream containing aggregates was collected, concentrated by ultrafiltration and recycled to the feed solution. The high concentrations of chaotropic and reducing agents in the feed solution enabled dissociation of the recycled aggregates and consequently were fed again to the refolding reactor. When the initial feed mixture of denatured protein is used up, only buffer-containing chaotropic agents and recycled aggregates are fully converted to native protein. This process resulted in a stoichiometric conversion from the denatured protein to its correctly folded native state. The system was tested with bovine alpha-lactalbumin as model protein. Superdex 75 PrepGrade was used as size-exclusion medium. The yield of 30% active monomer in the batch process was improved to 41% at a recycling rate of 65%. Assuming that the aggregates can be redissolved and recycled into the feed stream in a quantitative manner, a refolding yield close to 100% is possible. The method can be also applied to other chromatographic principles suited for the separation of aggregates.  相似文献   

13.
Efficient refolding of recombinant proteins in the forms of inclusion bodies at higher concentration remains challenging. Here, we report a strategy of a dual-gradient hydrophobic interaction chromatography (HIC) mode to refold recombinant human granulocyte colony-stimulating factor from its inclusion bodies at high protein concentration. The strategy was taken to meet the demand of dynamic refolding proceeding by gradually decrease the denaturant (guanidine-HCl) concentration and gradually increase the hydrophilicity of media (column of Poros PE 20) with glycerol as additive to provide a mild refolding surroundings. Compared with dilution method, this dual-gradient HIC process gave about 8.5-fold of increase in specific activity and 30% increase in soluble protein recovery. Furthermore, much higher protein concentration could be obtained at the same time.  相似文献   

14.
RhNTA protein is a new thrombolytic agent which has potential medicinal and commercial value. Protein refolding is a bottleneck for large‐scale production of valuable proteins expressed as inclusion bodies in Escherichia coli. The denatured rhNTA protein was refolded by an improved size‐exclusion chromatography refolding process achieved by combining an increasing arginine gradient and a decreasing urea gradient (two gradients) with a size‐exclusion chromatography refolding system. The refolding of denatured rhNTA protein showed that this method could significantly increase the activity recovery of protein at high protein concentration. The activity recovery of 37% was obtained from the initial rhNTA protein concentration up to 20 mg/mL. After refolding by two‐gradient size‐exclusion chromatography refolding processes, the refolded rhNTA was purified by ion‐exchange and affinity chromatography. The purified rhNTA protein showed one band in SDS‐PAGE and the specific activity of purified rhNTA protein was 110,000 U/mg. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The refolding and reassembly of an integral membrane protein OmpF porin denatured in sodium dodecylsulfate (SDS) into its stable species by the addition of n-octyl-beta-D-glucopyranoside (OG) have been studied by means of circular dichroism (CD) spectroscopy and low-angle laser light scattering photometry coupled with high-performance gel chromatography. The minimal concentration where change in the secondary structure was induced by the addition of OG was found to be 6.0 mg/ml in CD experiments. A species unfolded further than the SDS-denatured form of this protein was observed at an early stage (5-15 min) of refolding just above the minimal OG concentration. In addition, the CD spectrum of protein species obtained above the minimal OG concentration showed that the protein is composed of a beta-structure which is different from the native structure of this protein. In light scattering experiments, no changes in molecular assemblies were observed when the OG concentration was below its minimal refolding concentration determined by CD measurements. Above the minimal concentration, a compact monomeric species was observed when denatured OmpF porin was incubated for 5 min at 25 degrees C in a refolding medium containing 1 mg/ml SDS and 7 mg/ml OG, and then injected into columns equilibrated with the refolding medium. After an incubation of 24 h before injection into the columns, predominant dimerization of this protein was observed in addition to incorrect aggregation.  相似文献   

16.
Matrix-assisted refolding is an excellent technique for performing refolding of recombinant proteins at high concentration because aggregation during refolding is partially suppressed. The autoprotease Npro and its engineered mutant EDDIE can be efficiently refolded on cation-exchangers. In the current work, denatured fusion proteins were loaded at different column saturations (5 and 50 mg mL−1 gel), and refolding and self-cleavage were initiated during elution. The contact time of the protein with the matrix significantly influenced the refolding rate and yield. On POROS 50 HS, the refolding rate was comparable to a batch refolding process, but yield was substantially higher; at a protein concentration of 1.55 mg mL−1, an almost complete conversion was observed. With Capto S, the rate of self-cleavage increased by a factor of 20 while yield was slightly reduced. Processing the autoprotease fusion protein on Capto S at a high protein loading of 50 mg mL−1 gel and short contact time (0.5 h) yielded the highest productivity.  相似文献   

17.
A positively charged protein domain, Z(basic), can be used as a general purification tag to achieve efficient recovery of recombinantly produced target proteins using cation-exchange chromatography. To construct a protein domain usable for ion-exchange chromatography, the surface of protein Z was engineered to be highly charged, which allowed for selective capture of target proteins on a cation-exchanger at physiological pH values. Interestingly, the novel domain, denoted Z(basic), was shown to be selective also under denaturing conditions and could preferably be used for purification of proteins solubilised from inclusion bodies. Moreover, a flexible process for solid-phase refolding was developed, using Z(basic) as a reversible linker to the cation-exchanger resin. This procedure has the inherited advantage of combining purification and refolding into a single step and still enabling elution of a concentrated product in a suitable buffer. This article summarizes development and use of the Z(basic) tag in small and pilot-plant-scale downstream processing.  相似文献   

18.
This article has proposed an artificial chaperone-assisted immobilized metal affinity chromatography (AC-IMAC) for on-column refolding and purification of histidine-tagged proteins. Hexahistidine-tagged enhanced green fluorescent protein (EGFP) was overexpressed in Escherichia coli, and refolded and purified from urea-solubilized inclusion bodies by the strategy. The artificial chaperone system was composed of cetyltrimethylammonium bromide (CTAB) and β-cyclodextrin (β-CD). In the refolding process, denatured protein was mixed with CTAB to form a protein–CTAB complex. The mixture was then loaded to IMAC column and the complex was bound via metal chelating to the histidine tag. This was followed by washing with a refolding buffer containing β-CD that removed CTAB from the bound protein and initiated on-column refolding. The effect of the washing time (i.e., on-column refolding time) on mass and fluorescence recoveries was examined. Extensive studies by comparison with other related refolding techniques have proved the advantages of AC-IMAC. In the on-column refolding, the artificial chaperone system suppressed protein interactions and facilitated protein folding to its native structure. So, the on-column refolding by AC-IMAC led to 99% pure EGFP with a fluorescence recovery of 80%. By comparison at a similar final EGFP concentration (0.6–0.8 mg/mL), this fluorescence recovery value was not only much higher than direct dilution (14%) and AC-assisted refolding (26%) in bulk solutions, but also superior to its partner, IMAC (60%). The operating conditions would be further optimized to improve the refolding efficiency.  相似文献   

19.
M. Li  Z. Su 《Chromatographia》2002,56(1-2):33-38
Summary A new dual-gradient ion exchange chromatographic method was developed to improve the refolding yield of human lysozyme produced inEscherichia coli as an inclusion body. The dissolved and stretched polypeptide chain in a concentrated non-ionic denaturant was adsorbed onto an ion exchange column and induced to refold by gradually decreasing the denaturant concentration and increasing pH in the flowing buffer. The dual gradients of denaturant concentration and pH provided a gradual change of the solution environment along the chromatographic column for the protein to refold, resulting in enhanced activity yield and purity. A post-separation was also studied using size-exclusion chromatography to remove protein aggregates and mis-folded proteins after the refolding step.  相似文献   

20.
白姝  李浩  张麟 《物理化学学报》2013,29(4):849-857
抑制蛋白质聚集是应用基因重组技术生产药用蛋白质过程中的关键. 实验研究发现与蛋白质带同种电荷的离子交换介质能够通过静电排斥作用有效抑制蛋白质折叠中间体的聚集. 但其微观细节尚不明晰, 且利用现有实验技术很难直接阐释. 分子动力学模拟是研究微观过程的有力工具. 因此, 本文构建了静电排斥表面模型以模拟同电荷离子交换介质, 采用分子动力学模拟和全原子模型, 研究溶菌酶在静电排斥表面上的空间取向及其变化过程, 并考察表面所带电荷数的影响规律. 结果表明, 溶菌酶受到表面的静电排斥作用而远离. 在此过程中, 溶菌酶逐渐“站立”, 形成其偶极和表面相站立垂直的空间取向. 而当蛋白质远离表面时, 由于静电排斥作用衰减, 形成“站立”取向的趋势减弱. 同时, 研究发现静电排斥表面所带电荷数增加有利于蛋白质形成“站立”取向. 本文的模拟结果从微观揭示蛋白质在静电排斥表面上的空间取向及其影响因素, 将有助于推动蛋白质在荷电表面折叠和分子相互作用研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号