首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张振俊  唐春梅  康静  童培庆 《中国物理 B》2017,26(10):100505-100505
We study the dynamical energy equipartition properties in the integrable Toda model with additional uniform or disordered on-site energies by extensive numerical simulations. The total energy is initially equidistributed among some of the lowest frequency linear modes. For the Toda model with uniform on-site potentials, the energy spectrum keeps its profile nearly unchanged in a relatively short time scale. On a much longer time scale, the energies of tail modes increase slowly with time. Energy equipartition is far away from being attached in our studied time scale. For the Toda model with disordered on-site potentials, the energy transfers continuously to the high frequency modes and eventually towards energy equipartition. We further perform a systematic study of the equipartition time teq depending on the energy density εand the nonlinear parameter α in the thermodynamic limit for the Toda model with disordered on-site potentials. We find teq∝(1/ε)~a(1/α)~b, where b ≈ 2 a. The values of a and b are increased when increasing the strengths of disordered on-site potentials or decreasing the number of initially excited modes.  相似文献   

2.
We study the approach to near-equipartition in the N-dimensional Fermi-Pasta-Ulam Hamiltonian with quartic (hard spring) nonlinearity. We investigate numerically the time evolution of orbits with initial energy in some few low-frequency linear modes. Our results indicate a transition where, above a critical energy which is independent of N, one can reach equipartition if one waits for a time proportional to N(2). Below this critical energy the time to equipartition is exponentially long. We develop a theory to determine the time evolution and the excitation of the nonlinear modes based on a resonant normal form treatment of the resonances among the oscillators. Our theory predicts the critical energy for equipartition, the time scale to equipartition, and the form of the nonlinear modes below equipartition, in qualitative agreement with the numerical results. (c) 1995 American Institute of Physics.  相似文献   

3.
Statistical behavior of a classical φ4 Hamiltonian lattice is investigated from microscopic dynamics. Thelargest Lyapunov exponent and entropies are considered for manifesting chaos and equipartition behaviors of the system.It is found, for the first time, that for any large while finite system size there exist two critical couplings for the transitionsto equipartitions, and the scaling behaviors of these lower and upper critical couplings vs. the system size are numericallyobtained.  相似文献   

4.
Statistical behavior of a classical φ4 Hamiltonian lattice is investigated from microscopic dynamics. The largest Lyapunov exponent and entropies are considered for manifesting chaos and equipartition behaviors of the system. It is found, for the first time, that for any large while finite system size there exist two critical couplings for the transitions to equipartitions, and the scaling behaviors of these lower and upper critical couplings vs. the system size are numerically obtained.  相似文献   

5.
Based on the existence and uniqueness theorem for random wave equations, we consider asymptotic behaviors of solutions to the random initial value problem. We describe conditions for the equipartition of stochastic energy (or SE for short) by making use of the random spectral theory and, according to Goldstein's semigroup method, we prove the asymptotically equipartitioned SE theorem and the so-called virial theorem of classical mechanics, and also study the probabilistic characterization of the conditions for equipartition. In addition, we show at last the equipartition of SE from a finite time onwards.  相似文献   

6.
We numerically study a one-dimensional,nonlinear lattice model which in the linear limit is relevant to the study of bending(flexural)waves.In contrast with the classic one-dimensional mass-spring system,the linear dispersion relation of the considered model has different characteristics in the low frequency limit.By introducing disorder in the masses of the lattice particles,we investigate how different nonlinearities in the potential(cubic,quadratic,and their combination)lead to energy delocalization,equipartition,and chaotic dynamics.We excite the lattice using single site initial momentum excitations corresponding to a strongly localized linear mode and increase the initial energy of excitation.Beyond a certain energy threshold,when the cubic nonlinearity is present,the system is found to reach energy equipartition and total delocalization.On the other hand,when only the quartic nonlinearity is activated,the system remains localized and away from equipartition at least for the energies and evolution times considered here.However,for large enough energies for all types of nonlinearities we observe chaos.This chaotic behavior is combined with energy delocalization when cubic nonlinearities are present,while the appearance of only quadratic nonlinearity leads to energy localization.Our results reveal a rich dynamical behavior and show differences with the relevant Fermi–Pasta–Ulam–Tsingou model.Our findings pave the way for the study of models relevant to bending(flexural)waves in the presence of nonlinearity and disorder,anticipating different energy transport behaviors.  相似文献   

7.
We consider a quantum particle coupled (with strength λ) to a spatial array of independent non-interacting reservoirs in thermal states (heat baths). Under the assumption that the reservoir correlations decay exponentially in time, we prove that the motion of the particle is diffusive at large times for small, but finite λ. Our proof relies on an expansion around the kinetic scaling limit ( l\searrow 0{\lambda \searrow 0}, while time and space scale as λ−2) in which the particle satisfies a Boltzmann equation. We also show an equipartition theorem: the distribution of the kinetic energy of the particle tends to a Maxwell-Boltzmann distribution, up to a correction of O2).  相似文献   

8.
We investigate collective Cooper-pair transport of one- and two-dimensional Josephson-junction arrays. We derive an analytical expression for the current-voltage characteristic revealing thermally activated conductivity at small voltages and threshold voltage depinning. The activation energy and the related depinning voltage represent a dynamic Coulomb barrier for collective charge transfer over the whole system and scale with the system size. We show that both quantities are nonmonotonic functions of the magnetic field. We propose that formation of the dynamic Coulomb barrier and its size scaling are consequences of the mutual Josephson phase synchronization across the system. We apply the results for interpretation of experimental data in disordered films near the superconductor-insulator transition.  相似文献   

9.
We investigate the multi-scale structure of a tree network obtained by constructal theory and we propose a new geometrical framework to quantify deviations from scale invariance observed in many fields of physics and life sciences. We compare a constructally deduced fluid distribution network and one based on an assumed fractal algorithm. We show that: (i) the fractal network offers lower performance than the constructal object, and (ii) the constructal object exhibits a parabolic scaling explained in the context of the entropic skins geometry based on a scale diffusion equation in the scale space. Constructal optimization is equivalent to an equipartition of scale entropy production over scale space in the context of entropic skins theory. The association of constructal theory with entropic skins theory promises a deterministic theory to explain and build optimal arborescent structures.  相似文献   

10.
Arbesman S  Christakis NA 《Physica A》2011,390(11):2155-2159
Previous research has examined how various behaviors scale in cities in relation to their population sizes. Behavior related to innovation and productivity has been found to increase per capita as the size of the city increases, a phenomenon known as superlinear scaling. Criminal behavior has also been found to scale superlinearly. Here we examine a variety of prosocial behaviors (e.g., voting and organ donation), which also would be presumed to be categorized into a single class of scaling with population. We find that, unlike productivity and innovation, prosocial behaviors do not scale in a unified manner. We argue how this might be due to the nature of interactions that are distinct for different prosocial behaviors.  相似文献   

11.
This paper examines the process dynamics and thermodynamics of charged particle beams which remain equipartitioned. Considering a high-intensity ion beam in a space-charge dominated regime and with an initially large mismatched RMS beam size, we observe a fast increasing spatial anisotropy of the beam. Since space-charge interactions in a high-intensity linear accelerator can lead to energy equipartition between the degrees of freedom, this anisotropization phenomena suggest a kind of route to equipartition. In this paper we show that the particle-particle resonances and mode-particle resonances lead to the anisotropization of the beam, that is, both the envelope ratio and the emittance ratio are different from one. We propose that this anisotropy is responsible for the beam’s equipartitioning. The results suggest that the beam remains equipartitioned when it exhibits a macroscopic anisotropy, which is characterized by the following properties: the development of an elliptical shape with increasing size along a direction, the presence of a coupling between transversal emittances, halo formation along a preferential direction, stationarity of the temperature and a growth of the entropy in the cascade form. We call the state characterized by these properties as an anisotropic equipartition state.  相似文献   

12.
We present a detailed analysis of the modulational instability of the zone-boundary mode for one and higher-dimensional Fermi-Pasta-Ulam (FPU) lattices. Following this instability, a process of relaxation to equipartition takes place, which we have called the Anti-FPU problem because the energy is initially fed into the highest frequency part of the spectrum, at variance with the original FPU problem (low frequency excitations of the lattice). This process leads to the formation of chaotic breathers in both one and two dimensions. Finally, the system relaxes to energy equipartition on time scales which increase as the energy density is decreased. We show that breathers formed when cooling the lattice at the edges, starting from a random initial state, bear strong qualitative similarities with chaotic breathers.  相似文献   

13.
The FPU problem, i.e., the problem of energy equipartition among normal modes in a weakly nonlinear lattice, is here studied in dimension two, more precisely in a model with triangular cell and nearest-neighbors Lennard-Jones interaction. The number n of degrees of freedom ranges from 182 to 6338. Energy is initially equidistributed among a small number n(0) of low frequency modes, with n(0) proportional to n. We study numerically the time evolution of the so-called spectral entropy and the related "effective number" n(eff) of degrees of freedom involved in the dynamics; in this (rather typical) way we can estimate, for each n and each specific energy (energy per degree of freedom) epsilon, the time scale T(n)(epsilon) for energy equipartition. Numerical results indicate that in the thermodynamic limit the equipartition times are short: more precisely, for large n at fixed epsilon we find a limit curve T(infinity)(epsilon), and T(infinity) grows only as epsilon(-1) for small epsilon. Larger equipartition times are obtained by lowering epsilon, at fixed n, below a crossover value epsilon(c)(n). However, epsilon(c) appears to vanish by increasing n (faster than 1n), and the total energy E=nepsilon, rather than epsilon, appears to be the relevant variable when n is large and epsilon相似文献   

14.
We study the effect of a thermal environment on adiabatic quantum computation using the Bloch-Redfield formalism. We show that in certain cases the environment can enhance the performance in two different ways: (i) by introducing a time scale for thermal mixing near the anticrossing that is smaller than the adiabatic time scale, and (ii) by relaxation after the anticrossing. The former can enhance the scaling of computation when the environment is super-Ohmic, while the latter can only provide a prefactor enhancement. We apply our method to the case of adiabatic Grover search and show that performance better than classical is possible with a super-Ohmic environment, with no a priori knowledge of the energy spectrum.  相似文献   

15.
We consider the scaling of the mean square dipole moment in a plasma with logarithmic interactions in a two- and three-dimensional systems. In both cases, we establish the existence of a low-temperature regime where the mean square dipole moment does not scale with system size and a high-temperature regime where it does scale with system size. Thus, there is a nonanalytic change in the polarizability of the system as a function of temperature and hence a metal-insulator transition in both cases. The relevance of this transition in three dimensions to quantum phase transitions in (2+1)-dimensional systems is briefly discussed.  相似文献   

16.
The purpose of this Letter is to conjecture a characterization of the anisotropic equipartition state. The anisotropic equipartition state is defined through a phase space density which is uniform on the invariant surface of ξ, where ξ is the ratio between the oscillation energies in the x- and y-directions. It is a version of the ergodic hypothesis where the invariant surface of ξ plays the role of the conserved energy. We show that the anisotropic equipartition state is characterized by the following properties: the development of an elliptical shape with increasing size along the x-direction, the presence of a coupling between transversal emittances, halo formation along a preferential direction, stationarity of the temperature and a growth of the entropy in the cascade form.  相似文献   

17.
If one demystifies entropy the second law of thermodynamics comes out as an emergent property entirely based on the simple dynamic mechanical laws that govern the motion and energies of system parts on a micro-scale. The emergence of the second law is illustrated in this paper through the development of a new, very simple and highly efficient technique to compare time-averaged energies in isolated conservative linear large scale dynamical systems. Entropy is replaced by a notion that is much more transparent and more or less dual called ectropy. Ectropy has been introduced before but we further modify the notion of ectropy such that the unit in which it is expressed becomes the unit of energy. The second law of thermodynamics in terms of ectropy states that ectropy decreases with time on a large enough time-scale and has an absolute minimum equal to zero. Zero ectropy corresponds to energy equipartition. Basically we show that by enlarging the dimension of an isolated conservative linear dynamical system and the dimension of the system parts over which we consider time-averaged energy partition, the tendency towards equipartition increases while equipartition is achieved in the limit. This illustrates that the second law is an emergent property of these systems. Finally from our large scale linear dynamic model we clarify Loschmidt’s paradox concerning the irreversible behavior of ectropy obtained from the reversible dynamic laws that govern motion and energy at the micro-scale.  相似文献   

18.
We consider shell models that display an inverse energy cascade similar to two-dimensional turbulence (together with a direct cascade of an enstrophylike invariant). Previous attempts to construct such models ended negatively, stating that shell models give rise to a "quasiequilibrium" situation with equipartition of the energy among the shells. We show analytically that the quasiequilibrium state predicts its own disappearance upon changing the model parameters in favor of the establishment of an inverse cascade regime with Kolmogorov scaling. The latter regime is found where predicted, offering a useful model to study inverse cascades.  相似文献   

19.
We determine the optimal scaling of local-update flat-histogram methods with system size by using a perfect flat-histogram scheme based upon the exact density of states of 2D Ising models. The typical tunneling time needed to sample the entire bandwidth does not scale with the number of spins N as the minimal N2 of an unbiased random walk in energy space. While the scaling is power law for the ferromagnetic and fully frustrated Ising model, for the +/-J nearest-neighbor spin glass the distribution of tunneling times is governed by a fat-tailed Fréchet extremal value distribution that obeys exponential scaling. Furthermore, the shape parameters of these distributions indicate that statistical sample means become ill defined already for moderate system sizes within these complex energy landscapes.  相似文献   

20.
Earthquakes are obviously complex phenomena associated with complicated spatiotemporal correlations, and they are generally characterized by two power laws: the Gutenberg-Richter (GR) and the Omori-Utsu laws. However, an important challenge has been to explain two apparently contrasting features: the GR and Omori-Utsu laws are scale-invariant and unaffected by energy or time scales, whereas earthquakes occasionally exhibit a characteristic energy or time scale, such as with asperity events. In this paper, three high-quality datasets on earthquakes were used to calculate the earthquake energy fluctuations at various spatiotemporal scales, and the results reveal the correlations between seismic events regardless of their critical or characteristic features. The probability density functions (PDFs) of the fluctuations exhibit evidence of another scaling that behaves as a q-Gaussian rather than random process. The scaling behaviors are observed for scales spanning three orders of magnitude. Considering the spatial heterogeneities in a real earthquake fault, we propose an inhomogeneous Olami-Feder-Christensen (OFC) model to describe the statistical properties of real earthquakes. The numerical simulations show that the inhomogeneous OFC model shares the same statistical properties with real earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号