首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of electron excitations and luminescence of LiB3O5 (LBO) single crystals was studied using low-temperature luminescence vacuum ultraviolet spectroscopy with a subnanosecond time resolution under photoexcitation with synchrotron radiation. The kinetics of the photoluminescence (PL) decay, the time-resolved PL emission spectra, and the time-resolved PL excitation spectra of LBO were measured at 7 and 290 K, respectively. The PL emission bands peaking at 2.7 eV and 3.3 eV were attributed to the radiative transitions of electronic excitations connected with lattice defects of LBO. The intrinsic PL emission bands at 3.6 and 4.2 eV were associated with the radiative annihilation of two kinds of self-trapped electron excitations in LBO. The processes responsible for the formation of localized electron excitations in LBO were discussed and compared with those taking place in wide-gap oxides.  相似文献   

2.
We reported on the recombination processes determined by the release of electrons from defects connected with the dosimetric 430 K thermostimulated luminescence (TSL) peak as well as with the 260 K TSL peak. These TSL peaks appear in thermochemically reduced α-Al2O3 crystals containing hydrogen and emission of these TSL peaks corresponds to luminescence of the F-center. The X-ray exposure or UV excitation in the absorption band of F-centers at 6.0 eV of reduced α-Al2O3 crystals doped with acceptor impurities results in the appearance of a broad anisotropic complex absorption band in the spectral region 2.5–3.5 eV and in the appearance of a predominant TSL peak at 430 K. Above 430 K the above-mentioned broad absorption band disappears. Optical bleaching of the 2.5–3.5 eV band is accompanied by the disappearance of the 430 K TSL peak and results in F-center emission. The X-ray or UV excitation of reduced α-Al2O3 crystals with donor-type impurities results in the appearance of an anisotropic absorption band at 4.2 eV and the appearance of a dominant TSL peak at 260 K. Above 260 K the 4.2 eV absorption disappears and photostimulated luminescence (PSL) of the F-center recombination luminescence in the 4.2 eV region is no longer observed. Optical bleaching of the 4.2 eV absorption band is accompanied by the disappearance of the 260 K TSL peak. The successful use of reduced α-Al2O3 in dosimetry needs the optimization of the concentration of all components (acceptors, hydrogen, intrinsic defects) involved in the thermo- and photostimulated processes.  相似文献   

3.
The excitation spectra of luminescence in irradiated and nonirradiated corundum crystals are investigated by means of highly polarised synchrotron radiation in 5 to 30 eV region. In the fundamental absorption region the double-exciton peaks are observed in the region 8.5-9.2 eV for irradiated (especially by neutrons) crystals at temperature 90 K. At 9.5 eV sharp drops appeared, in the luminescence spectrum space which were interpreted as nonirradiative near-surface recombination, the probability of which sharply increased at high absorption coefficients. The enhancement of the luminescence efficiency in the high-energy region was connected with the decay effect of electron excitations as well as with the influence of volumetric excitations leading to the enhancement of recombination glow. Received 16 October 1998 and Received in final form 20 January 1999  相似文献   

4.
室温下掺铊碘化铯(CsI∶Tl)晶体的吸收谱在230~320 nm范围内有3个特征峰:310 nm(4 eV)、270nm(4.6 eV)和245 nm(5.1 eV)。采用这3种不同激发能量(对应不同激发机制)的近紫外(UV)光激发得到的荧光(PL)光谱相同。这些PL谱与钨(W)靶X射线激发的辐照致荧光(RL)谱也类似。经分峰计算,PL和RL均含有4种熟知的3.1 eV(400 nm)、2.55 eV(486 nm)、2.25 eV(550 nm)和2.1 eV(590 nm)发光组分,但RL中2.1 eV组分高于PL,同时2.55 eV组分又低于PL。分析认为,这一差异来自于X射线对晶体的辐照损伤Tl+Va+、Tl0Va+,相关的2.1 eV吸收峰与2.55 eV发光带重叠。结果表明:X射线比紫外光更易产生损伤从而影响晶体CsI∶Tl的发光特性。  相似文献   

5.
Luminescence properties of undoped hafnia and zirconia nanopowders prepared by solution combustion synthesis were investigated under photo- and electron-beam excitation in 10–400 K temperature range. Along with the main luminescence band revealed in investigated materials at low temperatures at 4.2–4.3 eV and ascribed to the emission of self-trapped excitons, there are luminescence bands due to defects and impurities introduced during sample preparation. At room temperature the latter emissions dominate in the luminescence spectra as the intrinsic self-trapped exciton emission is quenched. Analysis of decay kinetics of defect centers allowed identification of F+ centers emission at 2.8 eV with lifetimes ∼3–6 ns in hafnia and zirconia under intra-center excitation.  相似文献   

6.
Luminescence and excitation spectra of doped LiF and NaF crystals are studied by time-resolved optical and luminescent vacuum ultraviolet (VUV) spectroscopy (2–40 eV energy range, T=10–295 K) with the use of synchrotron radiation of the X-ray and the VUV ranges and pulsed electron beams. Spectral kinetic parameters of luminescence and energies of excited states of U6+ ions are determined. The dominant role of the electron-hole mechanism for energy transfer to impurity centers is established. The effect of multiplication of electronic excitations is clearly manifested for E > 25 eV in NaF:U, Cu crystals and determines their high scintillation yield (137% relative to Tl:CsI when detected in the current regime).  相似文献   

7.
In LiBaF3 crystals both valence–core transitions (5.4–6.5 eV) and so-called self-trapped exciton luminescence (about 4.3 eV) are important for practical application. Here, we present a study of 4.3 eV luminescence under photo- and thermostimulation after X-irradiation of undoped LiBaF3 crystals at various temperatures. Optically stimulated luminescence as a result of electron recombination with both self-trapped holes and holes localized at some defects, were observed after X-irradiation below 130 K and that of electron recombination with defect-localized holes was observed after X-irradiation above 130 K. The spectra of thermo-stimulated luminescence (TSL) contain a broad band about 4 eV related to the electron (high-energy side) or hole (low-energy side) recombination depending on TSL peak temperature.  相似文献   

8.
Characteristics of the defects created at 4.2 K by the UV-irradiation of CsI : Tl crystals in the Tl+-related absorption bands (by photons of 5.8-4.8 eV energy) have been studied. The dependences of the intensities of the thermally stimulated luminescence peaks appearing near 60, 90 and 125 K and of the recombination luminescence photostimulation bands peaking at 2.35, 1.92, 1.33 and 0.89 eV on the irradiation energy and duration, uniaxial stress and thallium concentration have been examined. The mechanisms of the processes, responsible for the appearance of the intense visible (2.55 and 2.25 eV) luminescence of excitons localized near Tl+ ions and creation of defects pairs of the type of Tl0-VK and Tl+-VK with various distances between the components, have been discussed.  相似文献   

9.
The spectral and kinetic parameters of electron-pulse-initiated transient absorption and emission of LiF crystals were studied using pulsed spectrometry with a nanosecond time resolution. The measurements were performed in the spectral region of 6 eV, the temperature range of 11–150 K, and within 10?8–10 s after the termination of an electron pulse. It is shown that the electron-pulse irradiation not only gives rise to F, V k , and H centers in the LiF crystal but also to certain short-lived defects of two types that differ in the spectral positions of the absorptive and radiative transitions, the lifetime, and the temperature dependence of the production efficiency. Defects of type I feature absorptive transitions at 5.5 and 5.1 eV and a radiative transition at 5.8 eV, whereas the absorptive transitions at 5.3 and 4.75 eV and a radiative transition at 4.4 eV are characteristic of type-II defects. It is found that a variation in the ratio between the concentrations of the different types of short-lived centers in the range of 11–150 K does not affect the quantum efficiency of the F centers. It is assumed that the observed centers are self-trapped excitons of various types.  相似文献   

10.
This paper reports on the results of the comprehensive study of the dynamics of electronic excitations in K2Al2B2O7 (KABO) crystals, obtained by low-temperature luminescence vacuum ultraviolet spectroscopy with nanosecond time resolution upon photoexcitation by synchrotron radiation. For the first time, the data have been obtained on the photoluminescence (PL) decay kinetics, PL spectra with time resolution, PL excitation spectra with time resolution, and reflection spectra at 7 K; the intrinsic nature of PL at 3.28 eV has been established; luminescence bands of defects have been separated in the visible and ultraviolet spectral regions; an intense long-wavelength PL band has been detected at 1.72 eV; channels of the formation and decay of electronic excitations in K2Al2B2O7 crystals have been discussed.  相似文献   

11.
The nature of intrinsic emission bands of yttrium orthoaluminate in the UV spectral region at max=220 nm (5.63 eV) and 330 nm (4.13 eV) is studied on the basis of the luminescence of single crystals and single-crystal films of YAlO3 and Ce: YAlO3 excited by synchrotron radiation sources with an energy of 3–25 eV at 9 and 300 K. The single crystals and single-crystal films were obtained, respectively, from solution and solution-melt by liquid-phase epitaxy and are characterized by considerably different concentrations of substitutional and vacancy defects. It is found that only the luminescence band at 300 nm, which has the decay time τ=4.1 ns and is excited in a band shifted from the range of interband transitions by 0.25 eV, has exciton-like character. The luminescence band at 220 nm with τ=0.1 µs at 9K, which is observed only for YAlO3 single crystals and is absent in the luminescence of single-crystal films, is associated with antisite defects of the Y Al 3+ type, which are a specific type of cationic isoelectronic impurities. It is shown that the phosphors based on single-crystal films of YAlO3 have a simpler scintillation decay kinetics than their bulk analogues due to the absence of channels of excitation energy dissipation associated with the antisite defects of Y Al 3+ type and vacancy defects.  相似文献   

12.
Doping of MgO single crystals with Be results in the formation of numerous Be-containing paramagnetic centres, easily detectable by EPR, and creates an intensive luminescence band at 6.2 eV, observable at T<200 K, and gives rise to new thermoluminescence peaks at 147 and 190 K. A paramagnetic centre with a rhombic symmetry that decays at 160 K was identified as a [Be]+ (i.e. O–Be2+) centre—a hole trapped by O2− lattice ion near a Be2+ perturbing defect. The luminescence excitation and isochronal annealing studies led to the conclusion that the 6.2 eV luminescence arises at the radiative decay of electron excitations near Be2+. These excitations can be created at the recombination of electrons with the holes localised in the [Be]+ centres, at the recombination of holes with the electrons trapped in the Be1+ centre or at a direct excitation of oxygen near the Be2+ ion.  相似文献   

13.
The electronic and crystal structures of SrMgF4 single crystals grown by the Bridgman method have been investigated. The undoped SrMgF4 single crystals have been studied using low-temperature (T = 10 K) time-resolved fluorescence optical and vacuum ultraviolet spectroscopy under selective excitation by synchrotron radiation (3.7–36.0 eV). Based on the measured reflectivity spectra and calculated spectra of the optical constants, the following parameters of the electronic structure have been determined for the first time: the minimum energy of interband transitions E g = 12.55 eV, the position of the first exciton peak E n = 1 = 11.37 eV, the position of the maximum of the “exciton” luminescence excitation band at 10.7 eV, and the position of the fundamental absorption edge at 10.3 eV. It has been found that photoluminescence excitation occurs predominantly in the region of the low-energy fundamental absorption edge of the crystal and that, at energies above E g , the energy transfer from the matrix to luminescence centers is inefficient. The exciton migration is the main excitation channel of photoluminescence bands at 2.6–3.3 and 3.3–4.2 eV. The direct photoexcitation is characteristic of photoluminescence from defects at 1.8–2.6 and 4.2–5.5 eV.  相似文献   

14.
离子激发发光(Ions beam induced luminescence,IBIL)可以实时原位分析不同温度、不同离子辐照条件下材料内部点缺陷的演变行为。本文利用2 MeV H^(+)研究了300,200,100 K温度下ZnO单晶内部点缺陷发光及其随注量的演变行为。实验中发现ZnO深能级发射和近带边发射,结合Voigt分峰与XPS实验结果,确定红光(1.75 eV)与V_(Zn)相关,橙红光(1.95 eV)来自Zn_(i)到O_(i)跃迁;对于与V_(O)相关的绿光(2.10 eV),其红移可能由于温度降低导致更多电子由导带释放到Zn_(i)。峰中心位于3.10 eV和3.20 eV近带边发射分别来自于Zn_(i)到价带的跃迁和激子复合,红移原因分别为Zn_(i)附近局域化能级和带隙收缩。利用单指数公式对发光强度进行拟合,获得的衰减速率常数(f)可以表征缺陷的辐射硬度,对比发现深能级发射峰在200 K时辐射硬度最大,而近带边发射峰在300 K时辐射硬度最大。  相似文献   

15.
Abstract

Thermo- and photostimulated processes are studied in reduced hydrogen containing α-Al2O3 excited by UV light. It is found that UV excitation in F absorption band at 90 K results in a ionization of the F-centers and capture of released electrons at defects thus producing an anisotropy absorption band at 4.2 eV and the dominant thermoluminescence (TL) peak at 260 K. The 260 K TSL peak is accompanied by complete bleaching of the 4.2 eV absorption band and vice versa—by light stimulation in the region of the 4.2 eV band the 260 K TSL peak disappear and released electrons recombine with F+-centers. Both the effect of the preliminary high-temperature thermal treatment of samples on formation of 4.2 eV-centers and the observed dichroism characteristics allows to conclude that corresponding complex defect contains hydrogen and can involve vacancy pair.  相似文献   

16.
The spectral kinetic characteristics of the luminescence excited in previously irradiated (≤106 Gy) LiF-O and LiF(U)-O crystals have been investigated in the spectral range 4–1.8 eV by pulsed spectrometry with nanosecond time resolution. The luminescence of the crystals was excited by nanosecond nitrogen-laser or electron-beam pulses at 300 K. The inertial character of uranium luminescence enhancement and the dependence of the number of enhancement stages on the excitation technique are revealed. A difference in the character of the dependences of the intensities of the pulse photo-and cathodoluminescence of uranium on the irradiation dose is found.  相似文献   

17.
Luminescence of very small samples of single crystals of coesite and stishovite has been studied. The spectra were detected under ionizing radiation (X-ray and electron beam) and the decay kinetics of cathodoluminescence in the range of time from 10 ns to 3 ms was measured. The coesite luminescence possesses a broad band at 3 eV with exponential decay about 680 μs at 80 K. The nature of this luminescence was explained as a self-trapped exciton creation in tetrahedron framework. The stishovite luminescence possesses two bands—blue (2.8 eV) and UV (4.7 eV). The UV band intensity grows more than 20 times with irradiation dose from initial level. This shows that the corresponding luminescence centers could be induced by the radiation. The decay of the UV band possesses a fast and a slow component. The determination of the fast decay parameters is beyond the capabilities of our apparatus (less than 10 ns), whereas the slow decay of the UV is non-exponential and takes place in the range of hundreds of microsecond. The blue band decay kinetics can be well approximated by power law ∼t−2, which may correspond to recombination of defects created by radiation. The stishovite single crystal luminescence is very similar to that of germanium dioxide single crystal of rutile structure. The nature of the stishovite luminescence is explained as recombination of defects created by irradiation in octahedron-structured lattice.  相似文献   

18.
Using the methods of time-resolved and steady-state luminescence spectroscopies, the luminescence and defects creation processes were studied at 4.2-300 K under excitation in the 3.0-10.5 eV energy range for an YAlO3:Ce crystal with very low concentration of Ce3+ ions. The results were compared with those obtained at the study of YAlO3:Ce crystals with large Ce3+ content coming from the same technological laboratory. Three irregular Ce3+ centers were found and two intrinsic defect luminescence centers related to the cation and oxygen vacancies were evidenced. The origin and structure of luminescence centers are discussed.  相似文献   

19.
Transmission, photoluminescence, and reflectance spectra of TlInS2 single crystals grown by the Bridgman–Stockbarger method were measured at 4.2 K near the fundamental absorption edge. Narrow lines at ~2.5535 and ~2.5694 eV were observed in the transmission spectrum and assigned to ground and excited free-exciton states, respectively. The free-exciton binding energy and band-gap energy Eg were found to be ~21.2 meV and ~2.5747 eV, respectively. A recombination mechanism was proposed for the TlInS2 near-band-edge and deep luminescence.  相似文献   

20.
Two luminescence bands in the UV range were detected in crystalline α-quartz under electron beam excitation (6 kV, 3-5 μA). One band is situated at 5 eV and could be observed in pure samples. Its intensity increases with cooling below 100 K and undergoes saturation below 40 K alongside a slow growth with the time of irradiation at 9 K. The decay curve of the band at 5 eV contains two components, a fast (<10 ns) and a slow one in the range of 200 μs. The photoluminescence band at 5 eV with a similar temperature dependence was found in previously neutron-irradiated crystalline α-quartz. Therefore, the band at 5 eV was attributed to host material defects in both irradiation cases. The creation mechanism of such defects by electrons, the energy of which is lower than the threshold for a knock-out mechanism of defect creation, is discussed. Another band at 6 eV, containing subbands in different samples, appears in the samples containing aluminum, lithium and sodium ions. This luminescence is ascribed to a tunnel radiative transition in an association of (alkali atom)0-[AlO4]+ that is formed after the trapping of an electron and a hole by Li+ (or Na+) and AlO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号