首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four activated carbons (S1-S4) possessing different structural characteristics were prepared by carbonization of commercial resins (used for ion exchange) and subsequent activation. Their textural parameters were determined on the basis of nitrogen adsorption-desorption at 77.4 K, analyzed by applying several local and overall adsorption isotherm equations. The nature of carbon surface functionalities was analyzed by FTIR spectroscopy. The GC and solid-phase extraction (SPE) techniques were applied to study the influence of the texture of carbonaceous materials on their adsorptive properties. The adsorption efficiency of synthesized carbons with respect to alkylhalides used as probe compounds in the GC measurements varied over a range from 28% (C(2)H(3)Cl(3)/S2) to 85% (CHBr(3)/S1) depending on the type of adsorbates and adsorbents. The concentrating efficiency of these carbons in SPE of explosive materials changed over a larger range from 12% (trinitroglycerin/S4) and 13% (trinitrotoluene/S2) up to 100% (octogen/S1). Active carbon prepared using Zerolite 225x8 as a precursor demonstrated better results than other carbons in two types of adsorption with average values of the efficiency of 75.4% for explosives and 60.8% for alkylhalides.  相似文献   

2.
Hydrogen adsorption on functionalized nanoporous activated carbons   总被引:2,自引:0,他引:2  
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.  相似文献   

3.
The use of active carbons for the removal of toxic organic compounds, for example from air or smoke, is of significant interest. In this paper, the equilibrium and dynamic adsorption characteristics of two active carbons are explored; one microporous coconut based and the other micro-mesoporous derived from a synthetic resin. Benzene, acetaldehyde and acrylonitrile were chosen as the probe toxicant vapours and adsorption was measured at a temperature of 298 K. The nitrogen equilibrium data (at 77 K), analysed using the BET, Dubinin-Radushkevich equations and DFT models, showed a higher overall adsorption capacity, more supermicroporosity and a higher proportion of pores wider than 2 nm for the synthetic resin based material. A micropore distribution biased toward the ultramicropore width-range was observed for the nutshell material. As a consequence, the characteristic adsorption energies in micropores are higher for the nutshell material than the resin based carbon. The effect of these different pore size characteristics on the adsorption kinetics, obtained by fitting the data to the linear driving force (LDF) model, is that the resulting adsorption rate constants are higher across much of the relative pressure range (p/p s ) studied for the resin based carbon compared to the nutshell material. Significantly, the wider pores of the resin-based carbon result in higher rates of adsorption in the micropore filling domain. When evaluated under dynamic conditions in cigarette smoke, improved toxicant removal was observed using the resin based carbon.  相似文献   

4.
The process of concentrating amphetamine (1-phenyl-2-propanamine, C6H5CH2CH(NH2)CH3) and its N-alkyl substituted derivatives C6H5CH2CH(NHR)CH3 and C6H5CH2CH(N(CH3)R)CH3 (R=(CH2)(n)CH3 at n=0, 1, 2, and 3) from diluted aqueous solution was investigated using six adsorbents having different textures and chemical compositions. Three chemically modified carbon adsorbents prepared from plum stones and routinely used SPE cartridges packed with graphitized adsorbents such as Hypercarb and Envicarb and polymeric LiChrolut EN were applied. Recovery rates of amphetamines increase nearly linearly with growing free energy of solvation due to better adsorption of amphetamines with larger side groups from polar solution. Reduction of a carbon surface leads to a decrease in the recovery rate. Its minimal values are observed for the adsorption of amphetamines on graphitized carbons due to both lower adsorption and worse desorption (elution) in comparison with those for activated carbons.  相似文献   

5.
The dependency of adsorption energy (E) and affinity coefficient (beta) of Dubinin equations (Dubinin-Radushkevich (DR) or Dubinin-Astakhov (DA)) on surface chemistry and porosity of activated carbons was investigated by analyzing adsorption of nitrogen, benzene, trichloroethylene (TCE), and water vapor by several surface-modified activated carbons and carbon fibers. For all studied nonpolar adsorbates, carbons with smaller average micropores showed higher adsorption energies independent of their surface chemistry. For water vapor, carbons with higher surface polarities showed higher adsorption energies due to specific adsorbate-adsorbent interactions. Adsorption energies increased with decreasing average micropore widths. betaN2,DR for different carbons were observed to vary in the 0.292-0.539 range. Carbons with higher degrees of mesoporosity had higher betaN2,DR values, while no dependency was observed between betaN2,DR and surface chemistry. A comparison of DR and DA cases indicates that: (1) the average value of betaN2,DA is considerably above the classical value of this parameter; and (2) the range of betaN2,DA values were smaller compared to betaN2,DR, despite a wide range of mesoporosity of carbons examined. Obtained beta(TCE,DR) values varied in the 0.952-1.243 range, with an average value of 1.085+/-0.083, independent of surface chemistry or porosity of activated carbons. A similar result was observed for beta(TCE,DA). betaH2O,DR values of different granular and fibrous activated carbons changed in the range of 0.081-0.271. They depended more on the carbon surface chemistry and less on the porosity. A similar result was obtained when DA equation was considered.  相似文献   

6.
The adsorption characteristics of activated carbon treated with 30 wt% HCl and 30 wt% NaOH were investigated. The acid and base values were determined by Boehm's method and the surface structures were studied by the BET method with N2 adsorption and iodine adsorption capacity. Also the adsorption properties of the activated carbons treated with acid and base chemical solutions were investigated with CO2 and NH3 adsorptions. Different adsorption behaviors of CO2 and NH3 on the modified activated carbons were observed, even though the physical surfaces of the activated carbons (i.e., specific surface area, pore size, and pore volume) were not significantly changed. Copyright 1999 Academic Press.  相似文献   

7.
In this work, the effects of different surface functional groups on the ammonia adsorption of porous carbons modified by electrochemical treatment in acidic solution (HNO3) under different current densities were investigated. The surface properties of the treated carbons were observed by Boehm's titration and X-ray photoelectron spectroscopy (XPS). It was found that the oxygen content of the carbons increased with increasing current density from the XPS results. However, the pH and acid values of the treated carbons slightly decreased in a sample prepared in 0.8 A/m2 of current density (ACs-0.8). This result indicated that the surface acidity could be reduced according to the characteristics of surface functional groups introduced. From the XPS results, it was found that the growth of CO groups was predominant at ACs-0.8. This result was also supported by an ammonia gas removal test. The adsorption capacity increased to ACs-0.4, but then began to decrease at AC-0.8.  相似文献   

8.
Several activated carbons differently pretreated (de-ashed, oxidized, reduced, wetted, frozen, and dried) were investigated using static (equilibrium adsorption of nitrogen and benzene) and dynamic (tert-butylbenzene (TBB)) adsorption methods. Treatments of carbons at relatively mild conditions leading to not great changes in their textural characteristics affect the TBB breakthrough concentration because of changes in the chemistry of the surfaces (oxidized or reduced) and the presence of water in airstream or pre-adsorbed on carbon beds. Oxygen-containing functionalities at a carbon surface change condition of competitive adsorption of nonpolar TBB and polar water molecules. Calculations of distribution functions of adsorption potential (A), energy (E), Gibbs free energy (Delta G) of adsorption of benzene and TBB and effective adsorption (first-order) rate pseudoconstant beta e over different ranges of relative exit TBB concentration c(t)/c(0) (from approximately 10(-5) to 0.01-0.4) reveal nonlinear effects caused by the size of carbon granules, the pore size distributions, the presence of water, oxidation or reduction of the surfaces and other treatments resulting in distribution functions f(y) with nonzero intensity in relatively broad ranges of the A, E, Delta G, and beta e values. There are many factors affecting the breakthrough parameters; therefore, simple linear relationships between these parameters and the structural characteristics (S(BET), S(DS), Vp, and V(DS)) are not observed.  相似文献   

9.
New series of carbon/silica gel nanocomposites, carbosils, prepared by the carbonization of starch bound to silica gel, and carbosils additionally silylated with octadecyldimethylchlorosilane were synthesized. These materials were applied as adsorbents in the solid‐phase extraction of explosive nitrate esters and nitroaromatics from aqueous solutions. The adsorption and desorption steps were evaluated separately. It was found that both the molecular properties of explosives (dipole moments, orbital energies, solvation effects) and textural properties influenced by carbon deposits or octadecyl moieties have a large impact on the recovery rates. It was shown that the composites with moderate content of carbon deposits or with the highest amounts of carbon deposits and additionally silylated can be used as materials tailored for extraction of explosives from the aqueous solutions.  相似文献   

10.
Structural characteristics of a series of MAST carbons were studied using scanning electron microscopy images and the nitrogen adsorption isotherms analyzed with several models of pores and different adsorption equations. A developed model of pores as a mixture of gaps between spherical nanoparticles and slitlike pores was found appropriate for MAST carbons. Adsorption of ibuprofen [2-(4-isobutylphenyl)propionic acid] on activated carbons possessing different pore size distributions in protein-free and bovine serum albumin (BSA)-containing aqueous solutions reveals the importance of the contribution of mesopores to the total porosity of adsorbents. The influence of the mesoporosity increases when considering the removal of the drug from the protein-containing solution. Cellulose-coated microporous carbon Norit RBX adsorbs significantly smaller amounts of ibuprofen than uncoated micro/mesoporous MAST carbons whose adsorption capability increases with increasing mesoporosity and specific surface area, burnoff dependent variable. A similar effect of broad pores is observed on adsorption of fibrinogen on the same carbons. Analysis of the ibuprofen adsorption data using Langmuir and D'Arcy-Watt equations as the kernel of the Fredholm integral equation shows that the nonuniformity of ibuprofen adsorption complexes diminishes with the presence of BSA. This effect may be explained by a partial adsorption of ibuprofen onto protein molecules immobilized on carbon particles and blocking of a portion of narrow pores.  相似文献   

11.
The objective of the present investigation was to determine the effectiveness of activated carbon in removing sodium dodecylbenzenesulfonate (SDBS) and to analyze the chemical and textural characteristics of the activated carbons that are involved in the adsorption process. Studies were also performed on the influence of operational variables (pH, ionic strength, and presence of microorganisms) and on the kinetics and interactions involved in the adsorption of this pollutant on activated carbon. The kinetics study of SDBS adsorption revealed no problems in its diffusion on any of the activated carbons studied, and Weisz-Prater coefficient (C WP) values were considerably lower than unity for all activated carbons studied. SDBS adsorption isotherms on these activated carbons showed that: (i) adsorption capacity of activated carbons was very high (260-470 mg/g) and increased with larger surface area; and (ii) dispersive interactions between SDBS and carbon surface were largely responsible for the adsorption of this pollutant. SDBS adsorption was not significantly affected by the solution pH, indicating that electrostatic adsorbent-adsorbate interactions do not play an important role in this process. The presence of electrolytes (NaCl) in the medium favors SDBS adsorption, accelerating the process and increasing adsorption capacity. Under the working conditions used, SDBS is not degraded by bacteria; however, the presence of bacteria during the process accelerates and increases SDBS adsorption on the activated carbon. Microorganism adsorption on the activated carbon surface increases its hydrophobicity, explaining the results observed.  相似文献   

12.
In this work, the characterization of Activated Carbons (AC) by using the independent pore models is discussed, with special emphasis on the issue of how the assumed pore geometry can affect the resulting Pore Size Distribution (rPSD) and on the problem of the unicity of the PSD when different probe molecules are used in adsorption experiments. A theoretical test was performed using virtual solids based in the so-called Mixed Geometry Model (MGM) (Azevedo et al. 2010). The MGM uses a kernel of adsorption isotherms generated by GCMC for different pore sizes and two pore geometries: slit and triangular. The adsorption isotherms of a virtual MGM solid were fitted with both the traditional Slit Geometry Model (SGM) and the Mixed Geometry Model (MGM). It is demonstrated that, by assuming a different pore geometry model from that of the real sample, different PSDs may be obtained by fitting adsorption isotherms of different probe gases. Finally, experimental results are shown which both point toward the MGM as an acceptable extension of the SGM and confirm that the MGM is a closer representation of the actual porous structure of most activated carbons.  相似文献   

13.
The aim of work is to study the adsorption of a common volatile organic compound such as toluene using activated carbons prepared by chemical activation with phosphoric acid of a lignocellulosic precursor, almond shell, under different conditions. The Impregnation ratio, temperature and time of activation were modified to obtain activated carbons with different characteristics. Regarding the characteristics of the activated carbons, the effects of porous structure and surface chemistry on the toluene adsorption capacity from toluene isotherms have been analysed. Results show that the control of properties of the activated carbons, particularly porous structure, highly dependent on the preparation conditions, plays a decisive role on the toluene adsorption capacity of the activated carbons. Concerning the experiments of toluene adsorption conducted in dynamic mode, activated carbons prepared at low temperatures of activation show higher breakthrough times than those obtained for activated carbons prepared at higher activation temperatures. The amount of toluene adsorbed in presence of water vapor in the gas stream lead to a decrease ranging from 33 to 46 % except for carbons prepared at higher temperatures activated that show only a slight decrease in the amount of toluene adsorbed. Activated carbons can be regenerated with soft heat treatment showing a slight decrease in the adsorption capacity. The high toluene adsorption capacities as well as the high breakthrough times obtained in presence of water vapor make these activated carbons suitable for commercial applications.  相似文献   

14.
In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content (approximately 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (approximately 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range approximately 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N(2) (77 K) and CO(2) (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M(2+)(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M(2+)(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) < or = 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.  相似文献   

15.
Physically and chemically activated carbons were prepared from date pits and olive stones. Titania and WO(x)-TiO(2)/MCM-41 were prepared as photoactive catalysts. Surface characterizations were investigated from ash content, pH, base neutralization capacities and FT-IR techniques. The textural characteristics, namely specific surface area (S(BET)) and pore texture, were determined from low temperature adsorption of N(2) at 77 K. The decolorization of aqueous solution of methylene blue was performed by means of two alternative methods. Steam-activated carbons own higher surface area compared with ZnCl(2)-activated carbons, and the micropore surface area represents the major contribution of the total area. Steam-activated carbons were the most efficient decolorizing adsorbents owing to its higher surface area, total pore volume and the basic nature of the surface. The calculated values of DeltaG(0), DeltaH(0) and DeltaS(0) indicate the spontaneous behavior of adsorption. The photocatalytic degradation is more convenient method in decolorizing of methylene blue compared with the adsorption process onto activated carbons.  相似文献   

16.
邢伟  禚淑萍  高秀丽  袁勋 《化学学报》2009,67(15):1771-1778
采用有序介孔硅为硬模板制备了具有不同孔径的有序介孔炭(OMCs). 氮气吸附测试表明, 有序介孔炭具有丰富的介孔表面和集中的介孔分布. 以壬基酚聚氧乙烯醚(NPE)为探针分子, 研究了大分子酚类在有序介孔炭上的吸附行为. 吸附研究表明, NPE在有序介孔炭上的吸附满足Langmuir吸附模型. 孔结构分析表明, 大于1.5 nm的孔的表面积是决定NPE吸附量的关键因素, 而有序介孔炭的最可几孔径决定吸附速率的大小. 与吸附量相比, 吸附速率更容易受环境温度的影响. 动力学研究表明, NPE在有序介孔炭上的吸附满足准二级动力学方程.  相似文献   

17.
有序介孔炭的合成及液相有机大分子吸附性能研究   总被引:3,自引:0,他引:3  
分别采用有序介孔氧化硅SBA-15和NaY分子筛为硬模板合成了系列有序介孔炭OMC和微孔炭CFY. N2静态吸附测试表明, 所合成的介孔炭具有丰富的介孔结构和集中的介孔分布. 以亚甲基蓝为探针分子, 研究其在有序介孔炭OMC和微孔炭CFY上的吸附行为. 研究结果表明, 有序介孔炭中大于3.5 nm的大介孔孔容是决定亚甲基蓝吸附容量和吸附速率的关键因素. 吸附动力学理论研究表明, 准二级动力学方程可以很好地描述亚甲基蓝分子在介孔炭上吸附动力学行为.  相似文献   

18.
Vo E  Berardinelli SP  Hall RC 《The Analyst》1999,124(6):941-944
The efficiency of solvent adsorption using Permea-Tec general solvent pads, used for the detection of chemical breakthrough of protective clothing, was determined for methanol, acetone, ethyl methyl ketone, trichloroethylene (TriCE), tetrachloroethylene (TetCE), toluene, m-xylene, and D-limonene. Known volumes of single or mixed solvents were added to pads in the range 0.2-5.0 microliters (0.16-8.13 micrograms). After microwave-solvent extraction (ME) into hexan-1-ol, the samples (0.5-3.0 microliters) of the filtered and extracted solutions were analyzed by gas chromatography. All solvents exhibited > 97% adsorption on the pads at spiking levels of 0.48-0.98 microgram for each solvent. The solvent recovery for the system was calculated for each solvent, with solvents with boiling points below 110 degrees C showing recoveries of > 90%, and with solvents with boiling points above 110 degrees C showing recoveries from 80 to 90%. The recovery precision was good (RSD < or = 4%) for all solvents over the range 1.0-2.5 microliters of applied solvents to pads for ME and 1.0 microliter of extracted solutions for GC analysis.  相似文献   

19.
Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N(2) adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation.  相似文献   

20.
The immersion enthalpies in benzene, cyclohexane, water, and phenol aqueous solution with a concentration of 100 mg L?1 are determined for eight activated carbons obtained from peach seeds (Prunus persica) by thermal activation with CO2 at different temperatures and times of activation. The results obtained for the immersion enthalpy show values between ?4.0 and ?63.9 J g?1 for benzene, ?3.0 and ?47.9 J g?1 for cyclohexane, ?10.1 and ?43.6 J g?1 for water, and ?11.1 and ?45.8 J g?1 for phenol solution. From nitrogen adsorption isotherms, the surface area, micropore volume, and average pore diameter of the activated carbons were obtained. These parameters are related with the immersion enthalpies, and the obtained trends are directly proportional with two first parameters in the nonpolar solvents, which is a behavior of microporous activated carbons with hydrophobic character. Phenol adsorption from aqueous solution on activated carbons is proportional to their surface area and their immersion enthalpy in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号