首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
稀土氧化物LSCO/YSZ的XRD和XPS研究   总被引:4,自引:0,他引:4  
采用常规固相反应法制备了不同Sr掺杂量的钙钛矿氧化物La1-xSrxCoO3材料。测试了该材料的XRD和XPS谱,研究了不同热处理工艺对Lz1-xSrxCoO3材料平均晶粒度的影响,研究了不同Sr掺杂量的La1-xSrxCoO3阴极材料表面的化学状态。结果表明,当热处理温度在900-1200)时,平均晶粒度较大,有利于形成多孔电极。随着Sr掺杂量的增加,La(3d5/2),Co(2p3/2)的结合能下降,氧空位浓度增加。  相似文献   

2.
以溶胶-凝胶法制备La1-xSrxCoO3(x=0.2,0.4,0.6,0.8)电极材料,XRD表征证明所得产物属钙钛矿相.由循环伏安和充放电曲线测试了La1-xSrxCoO3在碱性介质中的电化学电容性能.结果表明,La0.6Sr0.4CoO3电极10 mA.cm-2电流密度的放电比电容为325 F.g-1,500周期循环后其比电容仍保持于315 F.g-1,比电容保持率97.0%.  相似文献   

3.
研究了稀土钙钛矿型氧化物La1-xA′xCo1-yBiyO3-δ(A′z=Ba0.2,Sr0.4;y=0,0.2)催化剂上一氧化碳低温氧化反应.XRD结果表明这4个催化剂均为单相立方钙钛矿结构.18O2和CO脉冲实验结果表明Sr掺杂催化剂的晶格氧活动度和反应性比Ba掺杂的强.TPR结果表明Bi的掺杂降低了催化剂的还原温度,提高了催化活性,且Sr取代部分La比Ba取代部分La更有利于增加催化活性.我们认为,Sr.(或Ba)和Bi的掺杂引起的催化活性的提高与氧空位浓度的增加,Co和Bi离子氧化-还原循环的改善以及晶格氧活动度的增加密切相关.  相似文献   

4.
以La0.8Sr0.2Fe0.9CO0.1O3钙钛矿氧化物作氧载体,采用连续流动反应和连续顺序Redox反应考察了氧物种氧化甲烷的反应性能.结果表明,连续流动反应中La0.8Sr0.2Fe0.9CO0.1O3氧化物的氧物种能选择氧化甲烷生成合成气.在适宜的再氧化条件下,通过连续顺序Redox反应实现了La0.8Sr0.2Fe0.9CO0.1O3氧化物的氧物种氧化甲烷连续生成合成气,消耗的氧物种可通过与气相氧反应而得到补充.但随着Redox反应的进行,氧化物的持续供氧性能下降,钙钛矿结构被破坏.  相似文献   

5.
Sr2+对La3+的部分取代导致LaFeO3的结构性质和催化性能发生了显著变化.钙钛矿结构由LaFeO3的正交型变成了La0.8Sr0.2FeO3的近立方型.由于电荷补偿效应,Sr2+取代La3+导致部分Fe3+氧化为Fe4+,同时产生氧空穴,因而提高了La0.8Sr0.2FeO3的还原性能.由于氧空穴的作用,La0.8Sr0.2FeO3催化剂在CO氧化和CH4燃烧反应中均表现出较LaFeO3高的催化活性.在CO氧化反应中,氧空穴有利于反应物分子的吸附并加速了气相氧分子在表面上的解离;而在CH4燃烧反应中,氧空穴则促进了晶格氧物种从体相到表面的扩散.  相似文献   

6.
Sr2+对La3+的部分取代导致LaFeO3的结构性质和催化性能发生了显著变化.钙钛矿结构由LaFeO3的正交型变成了La0.8Sr0.2FeO3的近立方型.由于电荷补偿效应,Sr2+取代La3+导致部分Fe3+氧化为Fe4+,同时产生氧空穴,因而提高了La0.8Sr0.2FeO3的还原性能.由于氧空穴的作用,La0.8Sr0.2FeO3催化剂在CO氧化和CH4燃烧反应中均表现出较LaFeO3高的催化活性.在CO氧化反应中,氧空穴有利于反应物分子的吸附并加速了气相氧分子在表面上的解离;而在CH4燃烧反应中,氧空穴则促进了晶格氧物种从体相到表面的扩散.  相似文献   

7.
 用自燃烧法制备了钙钛矿型La0.8Sr0.2FeO3催化剂.用H2-TPR考察了催化剂表面的氧消耗过程,用程序升温表面反应(TPSR)研究了甲烷与催化剂表面氧物种的反应,用在线质谱脉冲反应和甲烷/氧切换反应研究了催化剂的晶格氧选择氧化甲烷制合成气.结果表明,催化剂上存在两种氧物种,无气相氧存在时,强氧化性氧物种首先将甲烷氧化为CO2和H2O;而后提供的氧化性较弱的晶格氧具有良好的甲烷部分氧化选择性,可将甲烷氧化为合成气CO和H2(选择性可达95%以上).在900℃下的CH4/O2切换反应结果表明,甲烷能与La0.8Sr0.2FeO3中的晶格氧反应选择性地生成CO和H2,失去晶格氧的La0.8-Sr0.2FeO3能与气相氧反应恢复其晶格氧.在合适的反应条件下,用La0.8Sr0.2FeO3催化剂的晶格氧代替分子氧按Redox模式实现甲烷选择氧化制合成气是可能的.  相似文献   

8.
武刚  李宁  戴长松  周德瑞 《催化学报》2004,25(4):319-325
 利用电化学阳极共沉积技术,从含不同Co2+/Ni2+比的NaOH溶液中,在Ni基体上制备了Co-Ni混合氧化物. 利用X射线衍射分析了混合氧化物的物相结构,并通过循环伏安法、稳态Tafel曲线和电化学阻抗谱研究了混合氧化物作为析氧阳极材料的电催化活性. 结果表明,从n(Co2+)/n(Ni2+)=1的电解液中沉积所得的Co-Ni混合氧化物主要为尖晶石结构NiCo2O4相,并具有最高的析氧催化活性. 析氧反应在Co-Ni混合氧化物电极上表现出两个明显的Tafel区域: 在低电势区Tafel曲线斜率为40~48 mV/(°),对OH-的反应级数为2.0; 在高电势区Tafel曲线斜率为110~120 mV/(°),对OH-的反应级数为1.0. 在恒定电势E=0.60 V时,Co-Ni混合氧化物上析氧反应的电化学标准活化焓为37.4~51.7 kJ/mol. 通过对析氧历程的分析,提出了在不同电势范围内Co-Ni混合氧化物上析氧反应的动力学方程,并较好地解释了实验结果.  相似文献   

9.
La1-xSrxCoO3-δ体系中缺陷形成与输运过程研究   总被引:1,自引:0,他引:1  
利用碘滴定法测定了钙钛矿型复合氧化物La1-xSrxCoO3-δ系列样品中金属元素的平均价态及氧的非化学计量值。实验发现:La1-xSrxCoO3-δ样品中的Co元素的平均价态随Sr掺杂量x的增加先增后减,室温下,在x=0.5时取最大值,温度升高,最大值移至x=0.4处。实验还发现,样品的电导率和330 K时的内耗峰峰高随Sr掺杂量x的变化也有类似极值,且极值点也分别出现在0.4和0.5左右,表明复合氧化物La1-xSrxCoO3-δ中的电子传导是通过极化子进行的。对于同一Sr掺杂量的样品,Co元素平均价态随温度的增加而减小。  相似文献   

10.
用自燃烧法制备了钙钛矿型La0.8Sr0.2FeO3催化剂。用H2-TPR考察了催化剂表面的氧消耗过程,用程序升温表面反应(TPSR)研究了甲烷与催化剂表面氧物种的反应,用在线质谱脉冲反应和甲烷/氧切换反应研究了催化剂的晶格氧选择氧化甲烷制合成气。结果表明,催化剂上存在两种氧物种,无气相氧存在时,强氧化性氧物种首先将甲烷氧化为CO2和H2O;而后提供的氧化性较弱的晶格氧具有良好的甲烷部分氧化选择性,可将甲烷氧化为合成气CO和H2(选择性可达95%以上)。在900℃一的CH4/O2切换反应结果表明,甲烷能与La0.8Sr0.2FeO3中的晶格氧反应选择性地生成CO和H2,失去晶格氧的La0.8Sr0.2FeO3能与气相氧反应恢复其晶格氧。在合适的反应条件下,用La0.8Sr0.2FeO3催化剂的晶格氧化替分子氧按Redox模式实现甲烷选择氧化制合成气是可能的。  相似文献   

11.
The behavior of dense ceramic anodes made of perovskite-type (x = 0.30–0.70; y = 0–0.05; z = 0–0.20) and K2NiF4-type (Me = Co, Cu; x = 0–0.20) indicates significant influence of metal hydroxide formation at the electrode surface on the oxygen evolution reaction (OER) kinetics in alkaline solutions. The overpotential of cobaltite electrodes was found to decrease with time, while cyclic voltammetry shows the appearance of redox peaks characteristic of Co(OH)2/CoOOH. This is accompanied with increasing effective capacitance estimated from the impedance spectroscopy data, because of roughening of the ceramic surface. The steady-state polarization curves of in the OER range, including the Tafel slope, are very similar to those of model Co(OH)2–La(OH)3 composite films where the introduction of lanthanum hydroxide leads to decreasing electrochemical activity. La2NiO4-based anodes exhibit a low electrochemical performance and poor stability. The effects of oxygen nonstoichiometry of the perovskite-related phases are rather negligible at high overpotentials but become significant when the polarization decreases, a result of increasing role of oxygen intercalation processes. The maximum electrocatalytic activity to OER was observed for A-site-deficient , where the lanthanum content is relatively low and the Co4+ concentration determined by thermogravimetric analysis is highest compared to other cobaltites. Applying microporous layers made of template-synthesized nanocrystalline leads to an improved anode performance, although the effects of microstructure and thickness are modest, suggesting a narrow electrochemical reaction zone. Further enhancement of the OER kinetics can be achieved by electrodeposition of cobalt hydroxide- and nickel hydroxide-based films. Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.  相似文献   

12.
The oxygen surface exchange kinetics of mixed conducting perovskite oxides SrTi(1-x)Fe(x)O(3-δ) (x = 0, 0.01, 0.05, 0.35, 0.5) has been investigated as a function of temperature and oxygen partial pressure using the pulse-response (18)O-(16)O isotope exchange (PIE) technique. Arrhenius activation energies range from 140 kJ mol(-1) for x = 0 to 86 kJ mol(-1) for x = 0.5. Extrapolating the temperature dependence to the intermediate temperature range, 500-600 °C, indicates that the rate of oxygen exchange, in air, increases with increasing iron mole fraction, but saturates at the highest iron mole fraction for the given series. The observed behavior is concomitant with corresponding increases in both electronic and ionic conductivity with increasing x in SrTi(1-x)Fe(x)O(3-δ). Including literature data of related perovskite-type oxides Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ), La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ), La(0.6)Sr(0.4)CoO(3-δ), and Sm(0.5)Sr(0.5)CoO(3-δ), a linear relationship is observed in the log-log plot between oxygen exchange rate and oxide ionic conductivity with a slope fairly close to unity, suggesting that it is the magnitude of the oxide ionic conductivity that governs the rate of oxygen exchange in these solids. The distribution of oxygen isotopomers ((16)O(2), (16)O(18)O, (18)O(2)) in the effluent pulse can be interpreted on the basis of a two-step exchange mechanism for the isotopic exchange reaction. Accordingly, the observed power law dependence of the overall surface exchange rate on oxygen partial pressure turns out to be an apparent one, depending on the relative rates of both steps involved in the adopted two-step scheme. Supplementary research is, however, required to elucidate which of the two possible reaction schemes better reflects the actual kinetics of oxygen surface exchange on SrTi(1-x)Fe(x)O(3-δ).  相似文献   

13.
An interface between the perovskite La(0.8)Sr(0.2)CoO(3-δ) (LSC-113) and the K(2)NiF(4)-type (La(0.5)Sr(0.5))(2)CoO(4-δ) (LSC-214) heterostructure was recently shown to enhance oxygen surface exchange and the rate of the oxygen reduction reaction (ORR) by orders of magnitude compared to either the LSC-113 or LSC-214 phase alone. This result is of interest to develop better optimized materials for solid-state electrochemical devices, e.g. solid oxide fuel cells. The effect has been attributed to the interface itself, rather than changes in the bulk LSC-113 or LSC-214 phases. Using density functional theory (DFT)-based simulations, we demonstrate that there is a ~0.9 eV (~1.3 eV) energy gain for exchanging a Sr from LSC-113(25%Sr) (LSC-113(40%Sr)) with a La from LSC-214(50%Sr). These changes in energy create a large driving force for interdiffusion across the heterostructure interface from Sr into LSC-214 and La into LSC-113. We estimate that the Sr concentrations (in the LSC-214 phase) in a typical experimental temperature range of 500-600 °C and in equilibrium with LSC-113(25%Sr) and LSC-113(40%Sr), may be about 75% Sr and 90% Sr, respectively. Based on the bulk behavior of the LSC-214 phase (Vashook et al., Solid State Ionics, 2000, 138, 99-104), an Sr enrichment from x = 0.5 to x = 0.75 in (La(1-x)Sr(x))(2)CoO(4-δ) is expected to enhance the oxygen vacancy concentration by 2-2.5 orders of magnitude under typical experimental conditions. An increased vacancy concentration in LSC-214 near the interface can explain most of the enhanced oxygen kinetics observed up until now in these heterostructures.  相似文献   

14.
La1-xSrxNi1-yCoyO3双功能氧电极的电化学性能   总被引:8,自引:0,他引:8  
采用溶胶-凝胶法制备了一系列La1-xSrxNi1-yCoyO3(x=0、0.1、0.2、0.5; y=0~1.0)型的钙钛矿催化剂,并以活性碳为载体制备双功能氧电极.对催化剂进行了XRD结构分析以及XPS表面分析.采用三电极体系测试了氧电极的稳态极化曲线和电化学交流阻抗谱并对其阴极极化和阳极极化谱图进行了分析.实验表明,对于LaNiO3化合物,B位掺杂可显著提高催化剂表面的B离子浓度, 从而提高电催化性能;而A位掺杂由于导致有序化氧空位的增多和电导的降低而造成活性下降.电极氧还原反应的极化主要由电荷转移反应和能斯特扩散过程造成.  相似文献   

15.
高性能Sm0.5Sr0.5CoO3阴极的制备与表征   总被引:8,自引:0,他引:8  
用固相合成法合成了Sm0.5Sr0.5CoO3 (SSC)中温固体氧化物燃料电池阴极材料.以La0.9Sr0.1Ga0.8Mg0.2O3为电解质,利用多种技术考察了不同温度(1173~1373 K)焙烧的SSC阴极,以及1173 K 焙烧、掺杂La0.8Sr0.2Ga0.8Mg0.15Co0.05O3(LSGMC5)或La0.8Sr0.2Ga0.8Mg0.09Co0.11O3 (LSGMC11)高氧离子电导材料的复合SSC阴极.SEM的结果显示,随着电极焙烧温度的增加,电极的颗粒度增大,孔隙度减小;LSGMC5、LSGMC11的掺杂对电极微观结构影响不大.交流阻抗和极化实验的结果表明,SSC电极的活性随电极焙烧温度的增加而减小,电极的最佳焙烧温度在1173 K左右;掺杂了LSGMC5或LSGMC11的复合SSC电极的活性以及稳定性显著高于SSC电极.  相似文献   

16.
用湿化学法制备了Sm0.5Sr0.5CoO3(SSC)-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3(LSGMC5)中温固体氧化物燃料电池复合阴极材料,其中SSC用甘氨酸-硝酸盐法合成,LSGMC5用柠檬酸盐法合成。XRD结果表明,甘氨酸-硝酸盐法制备的SSC在焙烧温度大于1223K即表现为单一的钙钛矿结构。随焙烧温度的升高,SSC粉末颗粒增大,导致含有高温烧结SSC的电极与电解质界面结合变差。采用多种技术考察了利用不同温度(1173-1373K)预烧的SSC粉末制备的SSC-LSGMC5阴极上进行的氧还原反应。结果表明,SSC-LSGMC5复合电极的性能显著依赖于电极中SSC粉末的预烧温度,当SSC粉末焙烧温度在1223K附近时,具有最小的欧姆电阻以及氧还原反应极化电阻,1A· cm-2电流密度下的极化过电位为0.077 V。  相似文献   

17.
LaMnO(3)-based perovskites are used as cathode materials in solid oxide fuel cells (SOFC). A major aspect for their applicability is their chemical inertness in connection with the electrolyte material YSZ (Zr(0.85)Y(0.15)O(1.93)) against zirconate formations. Perovskites with the composition La(y-x)(Sr, Ca)(x)Mn(1-u)Co(u)O(3) (y = 1.0 and 0.95; x = 0- 0.2 and 1; u = 0 and 0.2) were investigated with regard to their reactivity with YSZ at different reaction times and temperatures. Powder mixtures and double-layer reaction couples were used for the investigations. XRD phase analyses, SEM/EDX and EPMA were applied for the characterization of the annealed samples. La-deficient perovskites (y = 0.95) partially substituted by Sr and Ca improve the chemical compatibility of perovskite compositions towards YSZ. Sr-containing perovskites were found to have a higher reactivity than Ca perovskites for La(2)Zr(2)O(7) formation. On the other hand enhanced Ca diffusion into YSZ was observed. Co substitution on Mn lattice sites decreased the chemical compatibility, especially for Sr containing perovskites.  相似文献   

18.
Fast oxide ion conducting Ce 1- x M x O 2-delta (M = In, Sm; x = 0.1, 0.2) and Ce 0.8Sm 0.05Ca 0.15O 1.825 were prepared from the corresponding perovskite-like structured materials with nominal chemical composition of BaCe 1- x M x O 3-delta and BaCe 0.8Sm 0.05Ca 0.15O 2.825, respectively, by reacting with CO 2 at 800 degrees C for 12 h. Powder X-ray diffraction (PXRD) analysis showed the formation of fluorite-type CeO 2 and BaCO 3 just after reaction with CO 2. The amount of CO 2 gained per ceramic gram was found to be consistent with the Ba content. The CO 2 reacted samples were washed with dilute HCl and water, and the resultant solid product was characterized structurally and electrically employing various solid-state characterization methods, including PXRD, and alternating current (ac) impedance spectroscopy. The lattice constant of presently prepared Ce 1- x M x O 2-delta and Ce 0.8Sm 0.05Ca 0. 15O 1.825 by a CO 2 capture technique follows the expected ionic radii trend. For example, In-doped Ce 0.9In 0.1O 1.95 (In (3+) (VIII) = 0.92 A) sample showed a fluorite-type cell constant of 5.398(1) A, which is lower than the parent CeO 2 (5.411 A, Ce (4+) (VIII) = 0.97 A). Our attempt to prepare single-phase In-doped CeO 2 samples at 800, 1000, and 1500 degrees C using the ceramic method was unsuccessful. However, we were able to prepare single-phase Ce 0.9In 0.1O 1.95 and Ce 0.8In 0.2O 1.9 by the CO 2 capture method from the corresponding barium perovskites. The PXRD studies showed that the In-doped samples are thermodynamically unstable above 800 degrees C. The ac electrical conductivity studies using Pt electrodes showed the presence of bulk, grain-boundary, and electrode contributions over the investigated temperature range in the frequency range of 10 (-2)-10 (7) Hz. The bulk ionic conductivity and activation energy for the electrical conductivity of presently prepared Sm- and (Sm + Ca)-doped CeO 2 samples shows conductivities similar to those of materials prepared by the ceramic method reported in the literature. For instance, the conductivity of Ce 0.8Sm 0.2O 1.9 using the CO 2 capture technique was determined to be 4.1 x 10 (-3) S/cm, and the conductivity of the same sample prepared using the ceramic method was 3.9 x 10 (-3) S/cm at 500 degrees C. The apparent activation energy of the area-specific polarization resistance for the symmetric cell (Sm,Sr)CoO 3- x |Ce 0.8Sm 0.2O 1.9|(Sm,Sr)CoO 3- x was determined to be 1 eV in air.  相似文献   

19.
高性能镓酸镧基电解质燃料电池   总被引:8,自引:0,他引:8  
制备并用多种电化学方法研究了LaGaO3基高性能中温固体氧化物燃料电池的电极和电解质材料,组装出了高性能单电池.实验发现, Co掺杂的La0.8Sr0.2Ga0.8Mg0.2O3电解质中, Co含量的增加显著提高了电解质的氧离子电导率,电解质的氧迁移数略有减小,是非常好的中、低温燃料电池电解质.钴掺杂的电解质不仅显著减小了电池的欧姆电阻,而且减小了电池的阴、阳极极化过电位.以La0.8Sr0.2Ga0.8Mg0.11Co0.09O3为电解质时电池在1073、973、873 K下的最大输出功率密度分别达到1.77、0.92、0.41 W•cm-2,是非常有前景的电池体系.  相似文献   

20.
The oxygen incorporation/extraction kinetics of the potential solid oxide fuel cell (SOFC) cathode material Bi(1-x)Sr(x)FeO(3-δ) with x = 0.5 and 0.8 was studied by electrochemical impedance spectroscopy on geometrically well-defined pore-free thin film electrodes. The oxygen exchange rate was found to be higher than that of La(1-x)Sr(x)FeO(3-δ) and-among cobalt-free perovskites-only surpassed by Ba(1-x)Sr(x)FeO(3-δ) which is however known to be unstable in a SOFC environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号