首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Fluorescence and circular dichroic properties of bovine a-crystallin have been monitored to detect changes in the structural integrity of the protein following photoreactions in the presence of sensitizer, either methylene blue or N-formylkynurenine. Methylene blue-sensitized photooxidation causes a change in the tertiary structure as manifested in the near-UV CD; this is observed within 0.5 h of irradiation during which time tryptophan emission decreases rapidly. Using inhibitors specific for active species of oxygen, it has been shown that singlet oxygen predominantly causes this change but the sensitizer molecules also have some role in this process. Upon 6 h of irradiation in the presence of methylene blue under both aerobic and anaerobic conditions, the thiol groups that were in a non-polar region of the protein are exposed to polar environments. In conformity with these fluorescence results. near-UV CD (tertiary structure) suffers a drastic alteration whereas the far-UV CD (secondary structure) remains virtually unchanged. The studies with inhibitors indicate that sensitizer molecule itself is primarily responsible for this process. This major change in the conformation has been explained by suggesting that a large portion of the protein unfolds in the photosensitized reaction, thereby altering microenviron-ments, orientation, and intermolecular interactions of different amino acids. N-formylkynurenine also shows some changes in the near-UV CD, presumably, caused by H2O2 generated in the photosensitized reaction. But the major alteration in the microenvironments of thiol groups and in the near-UV CD, as observed in the case of methylene blue, does not occur even when the protein is irradiated for 6 h in the presence of N-formylkynurenine and air.  相似文献   

2.
CONFORMATIONAL CHANGES OF BOVINE LENS CRYSTALLINS IN A PHOTODYNAMIC SYSTEM   总被引:1,自引:0,他引:1  
Abstract— Conformational changes of bovine lens crystallins in a photodynamic system generating singlet oxygen, have been investigated. The formation of intersubunit crosslinks was observed in all three classes (α-, β and γ-) of crystallins by irradiation in the presence of the photosensitizer methylene blue. Near-UV circular dichroism (CD) spectra of the crystallins were significantly altered by irradiation under these conditions, indicating changes in tertiary structure but the far-UV CD remained unchanged suggesting that the secondary structure ((β-sheet conformation) remains unchanged. Significant changes in the absorption and fluorescence spectra were also observed. Measurement of total sulfhydryl content showed a decrease of 27%, 50% and 37% for α-, β- and γ-crystallins respectively, after irradiation. Fluorescence lifetime measurements of N-iodoacetyl-N'-(5-sulfo-l-naphthyl)ethylenediamine-labeled crystallins showed a significant decrease of the lifetime of the major decay components of the label bound to sulfhydryl groups of α- and γ-crystallins, but showed no change in the microenvironment of the sulfhydryl groups of β-crystallin. The results are consistent with the microenvironments of the tryptophan and sulfhydryl groups predicted from sequence studies.  相似文献   

3.
Singlet oxygen reacts preferentially with three amino acids in proteins, His, Trp and Met. In order to study the specific molecular events that result from such oxidations, calf a-crystallin was photooxidized in the presence of uroporphyrin and the reactions were investigated by high performance liquid chromatography peptide mapping using a photodiode array detector followed by fast atom bombardment mass spectrometry (FAB-MS). From these studies, the following conclusions can be inferred: (1) Upon photooxidation residue Met-68 of the B chain is oxidized to Met sulfoxide, whereas residue Trp-60 remains intact. (2) Two of the 16 His residues in a-crystallin are photooxidized with an apparent pKa of ca 7.0. (3) FAB-MS analysis suggests that residue Lys-166 close to the C-terminal end of the A chain forms a cross-link with the His-7 residue close to the N-terminal end of the A chain. This may be either an inter- or intramolecular cross-link.  相似文献   

4.
Abstract— The effect of 300 nm irradiation on the sulfhydryl groups of calf lens a-crystallin has been investigated by using specific, covalently bound fluorescent sulfhydryl probes 4–(N-iodoacetoxy)ethyl-N-methylamino-7-n-itrobenz-2-o-xa-1,3-d-iazole (IANBD), N-iodoacetyl-N'-(5-s-ulfo-l-naphthyl) ethylene-diamine (1,5 IAEDANS) and 5-i-odoacetamidofluorescein (IAF). The decrease in tryptophan fluorescence with time of irradiation of a-crystallin, is accompanied by a decrease in the fluorescence of the hydrophobic sulfhydryl label IANBD. In addition, the fluorescence of the surface-sulfhydryl label IAF increased in the irradiated a-crystallin. These results indicate that the sulfhydryl groups are in a more exposed (hydrophilic) environment in the irradiated protein than in the control, possibly because of partial unfolding of the protein. This result is confirmed by fluorescence lifetime measurements with IAEDANS. The decay curve of IAEDANS-α-crystallin has a major lifetime of 15.7 ns and a minor one of 24.6 ns. Upon irradiation, the lifetime of the major component decreases to 10.2 ns and that of the minor component to 21.7 ns. Denatured IAEDANS-α-crystallin has a single lifetime of 10.4 ns. These results show that the photoinduced damage to the tryptophan residues of α-crystallin alters the environment of the sulfhydryl groups and induces a change in the tertiary structure of the protein. Proximity of the cysteine residues to tryptophan in the tertiary structure of the protein may be an important determinant of their susceptibility to photoinduced change.  相似文献   

5.
The effect of 300 nm irradiation on the three lens crystallins, α-, β-, and γ-, was studied by using fluorescence and circular dichroism techniques. α-Crystallin showed a pronounced change in tertiary structure as manifested in fluorescence and circular dichroism measurements. This finding is in agreement with our earlier findings that the tryptophan residues of α-crystallin are more exposed than those of the other two crystallins. The results of studies using inhibitors specific for the different active species of oxygen suggest that H2O2-mediated damage is involved in the change of tertiary structure of the proteins. Analyses of circular dichroism spectra indicate that, upon irradiation, the secondary structure of α-crystallin remains virtually unaltered, and that the change in tertiary structure results primarily from photoinduced damage to the tryptophan residues.  相似文献   

6.
Anaerobic solutions of lens alpha-crystallin were subjected to near-UV (greater than 295 nm) irradiation, and the photoproducts were analyzed by fluorescence and room-temperature phosphorescence spectroscopy. The principal photoproduct was excited maximally at 340 nm, fluoresced maximally at 430 nm, and phosphoresced with an emission maximum at 510 nm. The phosphorescence intensity decay of this species was well fit by a sum of two exponentials with lifetimes of 9.2 ms (78%) and 61 ms (22%); this report is the first demonstration of a long-lived triplet state associated with a protein photolysis product. As reported previously, 3trp* is also long-lived in deoxygenated alpha-crystallin solution at room-temperature (Berger and Vanderkooi, 1989, Biochemistry 28, 5501-5508), hence both tryptophan and photoproduct triplet states are good candidates to mediate photodamage. Photolysis experiments in the presence of agents known to alter the tryptophan triplet yield provide evidence for the importance of triplet-state-mediated photodamage of lens crystallins in anaerobic solution. In 30 mM acrylamide where 3trp*, but not 1trp*, is efficiently quenched, anaerobic solutions exhibited marked resistance to protein photodamage, whereas the photoprotection in aerobic solution was minimal. In D2O, where photoionization is suppressed but triplet states are longer-lived, photodamage was accelerated in anaerobic solution but reduced in aerobic solutions. Finally, the anaerobic photodestruction rate was increased in 500 mM Cs+ solution where the triplet yield is increased by a heavy atom effect.  相似文献   

7.
The photodynamic effects of α-terthienyl (αT) in near-UV light (UV-A) on Escherichia coli showed close agreement with the light absorption of αT at different wavelengths suggesting that αT is the primary absorbing molecule responsible for the photosensitized reaction. Studies with DNA repair deficient mutants of E. coli indicated that the bactericidal action of αT/UV-A was not mediated by DNA damage, in direct contrast to the well-known photosensitizer, 8-methoxypsoralen. By using a closed borosilicate glass reaction vessel and various gas mixtures, it was demonstrated that photosensitization of both E. coli and a more resistant bacterium, Pseudomonas aeruginosa , was absolutely dependent on the presence of oxygen. The rate of killing by αT/UV-A showed a rather small dependence on preincubation temperatures, with quite rapid killing at 5°C, suggesting that the movement of αT across the cytoplasmic membrane of E. coli is not the rate limiting step in killing and perhaps is not even necessary for killing. Sodium dodecyl sulphate-polyacrylamide gels of cell membrane proteins after 15 and 30min of treatment with αT/UV-A showed substantial random crosslinking of these proteins. The results taken overall suggest that αT is a photodynamic photosensitizer which exerts its primary effect at the level of the cytoplasmic membrane.  相似文献   

8.
Abstract— Both native blue fluorescent α-crystallin from calf lenses and UV (300 nm)-irradiated blue-fluorescent α-crystallin, when further irradiated with 365 nm-UV light, produce photo-products capable of emitting a new fluorescence at 455 nm. Illumination of the photo-products with 420 nm visible light regenerates the original fluorescence at 420–425 nm. In addition, another fluorescence at 400 nm has also been found in UV (300 nm)-irradiated blue-fluorescent α-crystallin, when exposed to 365 nm-UV light.  相似文献   

9.
Buffer solutions of the lens protein γ-crystallin and the enzymes aldolase and liver alcohol dehydrogenase became turbid and formed solid precipitate upon exposure to an elevated temperature of 63°C or to UV radiation at 308 nm. When α-crystallin was added to the protein solutions in stoichiometric amounts, heat or UV irradiation did not cause turbidity, or turbidity developed much less rapidly than in the absence of α-crystallin. Hence, normal α-crystallin functioned as a molecular chaperone, providing protection against both UV and heat-induced protein aggregation. When α-crystallin was preirradiated with UV at 308 nm, its ability to function as a chaperone vis-a-vis both UV and heat-induced aggregation was significantly impaired, but only at relatively high UV doses. A major effect of preirradiation of α-crystallin was to cause interpeptide crosslinking among the αA2 and αB2 subunits of the α-crystallin macromolecule. In our experiments α-crystallin was exposed to UV doses, which resulted in 0, 50 and 90% crosslinking as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. α-Crystallin samples that were 50% and 90% crosslinked gave chaperone protection, which was increasingly impaired relative to unirradiated α-crystallin. The results are consistent with the notion that UV irradiation of α-crystallin results in loss of chaperone binding sites.  相似文献   

10.
Abstract— By a technique which combines rapid mixing of cells and hematoporphyrin (HP) with a short duration of illumination, the photodynamic inactivation of yeast cells was investigated, particularly, in seeking for the information of the location of HP at the time of action. The fluence-survival curves obtained under the conditions where the reaction mixture was kept in the dark for Is, 60s and even 35 min before illumination were indistinguishable from each other, indicating no interaction between cells and sensitizers took place in about 30 min in such a way that the photodynamic efficiency could be modified. It is unlikely that HP acted intracellularly, since the protective effect of N?3 was observed at concentrations as low as 0.5 mM. Furthermore, the rate constant kp related to the protective effect of NJ, was estimated to be 1 × 108M?1 s?1 under the assumption that 1O2 was the active intermediate and had a lifetime of 2 μs under the present conditions. This value of kp is rather close to that of kq, the quenching rate constant of N?3 for 1O2, of which the accepted value is 2 × 108M?1s?1 in the homogeneous aqueous system. This information, together with the absence of uptake of HP by cells and a well response of survival upon illumination to the D2O fraction of the reaction mixture, provide strong bases for the argument that direct interaction of HP with yeast cells is of minor importance in the photodynamic processes, and the photodynamic action is largely mediated by an intermediate (102) generated in bulk medium.  相似文献   

11.
Abstract— In view of the increasing attention to 1O2 (1Δg) participation in the photodynamic action, different types of genetic changes in Saccharomyces cerevisiae by acridine orange sensitization were compared with respect to the response to N3-, a well known quencher of 1O2. The induction of mitotic crossing over with respect to ade 2 locus and mitotic gene conversion at trp 5 locus were suppressed by the addition of N3- suggesting the involvement of 1O2 as a major intermediate. However, the induction of reverse mutation at ilv 1 was only slightly suppressed. These results may indicate that there are two types of photodynamic DNA damage; one is produced via 1O2 and the other via non-1O2 reaction pathway which lead to mitotic gene conversion and mitotic crossing over, and to mutation, respectively.  相似文献   

12.
Abstract— The N- p -phenylazophenyl-N-phenylcarbamyl chloride (PAPC) in its cis form is five times more active as inhibitor of α-chymotrypsin than in the trans form. In the present work, derivatives of PAPC have been synthesized. Each of these new compounds is photoisomerizable and is an inhibitor (in the cis and in the trans form) of α-chymotrypsin. The cis isomer is always more active than the trans. The m -methyl derivative is 17.5 times more active in the cis form than in the trans , whereas, for the para -substituted compound, this ratio is only 3.5.
Several hypotheses can explain this difference of activity between the cis and trans isomers: (1) steric hindrance towards the trans isomer, (2) lower affinity of the enzyme for the trans isomer, (3) higher reactivity of the complex formed between the enzyme and the cis form of the inhibitor. These hypotheses are discussed.  相似文献   

13.
Previous steady state and time resolved spectroscopic studies on porphyrins have shown that the triplet lifetimes of those sensitizers that bind to lens proteins are lengthened by several orders of magnitude. Presented here is an extension of this experiment to measure these transients in an intact bovine lens. As demonstrated by steady state fluorescence spectroscopy and flash photolysis, mesotetra (p-sulfonatophenyl)porphyrin (TPPS) binds to lens proteins. In air-saturated aqueous solution, TPPS has a triplet lifetime of 2 microseconds. In an intact bovine lens the triplet state decayed via biexponential kinetics with lifetimes of 0.16 and 1.6 microseconds. In addition to a lengthening of the lifetime there was a red shift in the triplet transient spectra of 10-20 nm of the porphyrin in the intact lenses.  相似文献   

14.
Abstract— The photoprotective effect of topically applied α-tocopheryl acetate (vitamin E acetate), a stable derivative of α-tocopherol (vitamin E), and its possible bioconversion to the active antioxidant species (α-tocopherol) was examined in skin tissue of female hairless mice (HRS/J) exposed to UV-B irradiation. Our results indicate that topically applied α-tocopheryl acetate is absorbed into and retained by skin tissue. Furthermore, skin tissue from UV-B-irradiated animals that received daily topical α-tocopheryl acetate treatments contained significantly higher levels (P < 0.001) of α-tocopheryl acetate than non-UV-B-irradiated mice that received identical daily topical α-tocopheryl acetate treatments. Finally, free α-tocopherol levels in skin also were significantly increased (P < 0.00 1) by topical applications of α-tocopheryl acetate and skin levels of free α-tocopherol were significantly greater (P < 0.001) in UV-B-irradiated animals that received daily topical α-tocopheryl acetate treatments than in non-UV-Birradiated animals. These results suggest that UV-B irradiation enhances both the absorption of α-tocopheryl acetate and its bioconversion to free α-tocopherol.  相似文献   

15.
Abstract— By means of in situ photolysis EPR of aqueous solutions of α-oxocarboxylic acids (RCO-CO2H) at pH values above 5, semidione radical anions [RC(O-)=C(O')R] and α-hydroxy-α-carboxy alkyl radicals [RC(OH)CO2-] were detected. C02 was identified as a reaction product. On photolysis of mixtures of α-oxocarboxylic acids (RCOCO2H and R'COCC2H), "mixed" semidione radical anions [RC(O->=C(O)R'] were observed in addition to RC(O-)=C(O')R, R'C(O-)=C(O')R', RC(OH)CO2- and R'C(OH)CO2-. The experimental results are explained in terms of photodecarboxylation (α-clea-vage) of electronically excited RCOCOJ to yield RCO and CO2. The radicals RC(OH)CO2- are formed by reduction of RCOCO2- by CO2-. The semidione radicals are produced by addition of RCO to RCOCO2- followed by decarboxylation of the intermediate adduct. This mechanism was confirmed by generating acyl radicals independently and reacting them with α-oxocarboxylic acids. Selected product studies support the mechanism suggested.  相似文献   

16.
Abstract Solid-state irradiation of cyclodextrin complexes of α,α-dimethyldeoxybenzoin results in the formation of a significant amount of rearrangement product, 4-isopropylbenzophenone, in addition to cage products. This behavior is not observed in the photolysis in solution or in micellar media.  相似文献   

17.
18.
Abstract— The photodegradation of riboflavin by 436 mμ monochromatic light and of lumichrome by white nonfiltered light was studied in a set of organic solvents including ethanol, acetone, dioxane, pyridine and acetic acid. For comparison, water was used as a solvent. Photolysis was carried out in the presence of atmospheric oxygen. Riboflavin and lumichrome were found to be effectively stabilized towards the action of light by hydrogen bonds with solvent molecules, and consequently are most light-stable in water solutions. The overall scheme of riboflavin photolysis in organic solvents seems to be the same as in aqueous solutions. Lumichrome has been found as the main product of riboflavin photolysis in the organic solvents tested.  相似文献   

19.
Abstract—The absorption and luminescent properties of two steroids [16-ketoestrone (I), 5α-androstane-3β-ol-16,17-dione (II)] are compared. The behaviour of these compounds which differ only in their A-ring is significantly different with regard to solvent dependence. The transfer of excitation energy in compound (I) from the phenolic to the diketonic chromophore is studied and compared with data from analogous estrogens. The results obtained in this study indicate a significant long range (presumably conformational) influence of the steroid A and D rings on each other.  相似文献   

20.
Abstract —D-α-tocopherol was found to be an effective quencher of 1O2 molecules ( k = 2.5 times 108→mol-1 s-1 in pyridine) by measuring its effect on the autosensitized photooxidation of rubrene. The quenching process was shown to be almost entirely 'physical', that is, α-tocopherol deactivated about 120 1O2 molecules before being destroyed. The results suggest that this process may be a mechanism for the protective effect of α - tocopherol in photodynamic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号