首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
汪莱  王嘉星  赵维  邹翔  罗毅 《中国物理 B》2010,19(7):76803-076803
Blue In0.2Ga0.8N multiple quantum wells (MQWs) with InxGa1 - xN (x=0.01-0.04) barriers are grown by metal organic vapour phase epitaxy. The internal quantum efficiencies (IQEs) of these MQWs are studied in a way of temperature-dependent photoluminescence spectra. Furthermore, a 2-channel Arrhenius model is used to analyse the nonradiative recombination centres (NRCs). It is found that by adopting the InGaN barrier beneath the lowest well, it is possible to reduce the strain hence the NRCs in InGaN MQWs. By optimizing the thickness and the indium content of the InGaN barriers, the IQEs of InGaN/InGaN MQWs can be increased by about 2.5 times compared with conventional InGaN/GaN MQWs. On the other hand, the incorporation of indium atoms into the intermediate barriers between adjacent wells does not improve IQE obviously. In addition, the indium content of the intermediate barriers should match with that of the lowest barrier to avoid relaxation.  相似文献   

2.
The effect of Al doping in the GaN layer of InGaN/GaN multiple quantum-well light emitting diodes (LEDs) grown by metalorganic chemical vapour deposition is investigated by using photoluminescence (PL) and highresolution x-ray diffraction. The full width at half maximum of PL of A1 doped LEDs is measured to be about 12nm. The band edge photoluminescence emission intensity is enhanced significantly. In addition, the in-plane compressive strain in the Al-doped LEDs is improved significantly and measured by reciprocal space map. The output power of Al-doped LEDs is 130mW in the case of the induced current of 200mA.  相似文献   

3.
The frequency down-conversion of one-dimensional photonic crystals with the coupled cavity structure is investigated by the nonlinear finite-difference time-domain method. The efficient frequency conversion is obtained by utilizing the advantages of the broad eigenfrequency band, the strong localization and the Bloch phase matching of the coupled cavity structure. More importantly, the signal frequency could be tuned continuously within the whole band of the coupled cavity structure (with a bandwidth to central frequency ratio of 5.4%), and the gains are homogeneous in the band.  相似文献   

4.
The double heterostructure GaN/InGaN/GaN films with different thicknesses of the InGaN layer were grown at 780℃ or 800℃ by metal-organic chemical vapour deposition.The samples were investigated using x-ray diffraction (XRD),room-temperature photoluminescence (PL) and Raman scattering.The dependences of the samples on both the growth temperature and the thickness of the InGaN layer were studied.The composition of InGaN was determined by the results of XRD,and the bowing parameter of InGaN was calculated in terms of the PL spectra.When the thickness of the InGaN layer was reduced,the phase separation of InGaN was found in some samples.The raman frequency of the A1(LO) and E2(low) modes in all the samples shifted and did not agree with Vegard‘s law.  相似文献   

5.
Zinc oxide (ZnO) single crystals are grown by the modified vertical Bridgman method using a PbF2 flux. The maximum size of the as-grown ZnO crystal is about Φ25 mm×5mm. The transmittance of the as-grown ZnO crystal is more than 70% in the range of 600-800hm and the optical band gap is estimated to be 3.21eV. The photoluminescence spectrum indicates that the as-grown ZnO crystal has a very low concentration of native defects and is much closed to its stoichiometry. The electrical measurement exhibits that the ZnO crystal has low electrical resistivity of 0.02394Ωcm^-1 and a high carrier concentration of 2.10×10^18cm^-3.  相似文献   

6.
We theoretically study the band structure and optical conductivity of twisted bilayer graphene(TBG) near the magic angle considering the effects of lattice relaxation. We show that the optical conductivity spectrum is characterized by a series of peaks associated with the van Hove singularities in the band structure, and the peak energies evolve systematically with the twist angle. Lattice relaxation effects in TBG modify its band structure, especially the flat bands, which leads to significant shifts of the peaks in the optical conductivity. These results demonstrate that spectroscopic features in the optical conductivity can serve as fingerprints for exploring the band structure, band gap, and lattice relaxation in magic-angle TBG as well as identifying its rotation angle.  相似文献   

7.
A cupric oxide (CuO) nanocrystal-doped NaCl single crystal and a pure NaCl single crystal are grown by using the Czochralski (Cz) method. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, optical absorption in the UV-visible range, and photoluminescence (PL) spectroscopy are used to characterize the obtained NaCl and NaCl:CuO crystals. It is observed that the average radius of CuO crystallites in NaCl:CuO crystal is about 29.87 nm, as derived from the XRD data analysis. Moreover, FT-IR and Raman spectroscopy results confirm the existence of the monoclinic CuO phase in NaCl crystal. UV-visible absorption measurements indicate that the band gap of the NaCl:CuO crystal is 434 nm (2.85 eV), and it shows a significant amount of blue-shift (△Eg = 1 eV ) in the band gap energy of CuO, which is due to the quantum confinement effect exerted by the CuO nanocrystals. The PL spectrum of the NaCl:CuO shows a broad emission band centred at around 438 nm, which is consistent with the absorption measurement.  相似文献   

8.
InGaN/GaN epilayers,which are grown on sapphire substrates by the metal-organic chemical-vapour deposition(MOCVD) method,are formed into nanorod arrays using inductively coupled plasma etching via self-assembled Ni nanomasks.The formation of nanorod arrays eliminates the tilt of the InGaN(0002) crystallographic plane with respect to its GaN bulk layer.Photoluminescence results show an apparent S-shaped dependence on temperature.The light extraction efficiency and intensity of photoluminescence emission at low temperature of less than 30 K for the nanorod arrays are enhanced by the large surface area,which increases the quenching effect because of the high density of surface states for the temperature above 30 K.Additionally,a red-shift for the InGaN/GaN nanorod arrays is observed due to the strain relaxation,which is confirmed by reciprocal space mapping measurements.  相似文献   

9.
InGaN/GaN epilayers,which are grown on sapphire substrates by the metal-organic chemical-vapour deposition(MOCVD) method,are formed into nanorod arrays using inductively coupled plasma etching via self-assembled Ni nanomasks.The formation of nanorod arrays eliminates the tilt of the InGaN(0002) crystallographic plane with respect to its GaN bulk layer.Photoluminescence results show an apparent S-shaped dependence on temperature.The light extraction efficiency and intensity of photoluminescence emission at low temperature of less than 30 K for the nanorod arrays are enhanced by the large surface area,which increases the quenching effect because of the high density of surface states for the temperature above 30 K.Additionally,a red-shift for the InGaN/GaN nanorod arrays is observed due to the strain relaxation,which is confirmed by reciprocal space mapping measurements.  相似文献   

10.
Most of the realistic networks are weighted scale-free networks. How this structure influences the condensation on it is a challenging problem. Recently, we make a first step to discuss its condensation [Phys. Rev. E 74 (2006) 036101] and here we focus on its evolutionary process of phase transition. In order to show how the weighted transport influences the dynamical properties, we study the relaxation dynamics in a zero range process on weighted scale-free networks. We find that there is a hierarchical relaxation dynamics in the evolution and there is a scaling relation between the relaxation time and the jumping exponent. The relaxation dynamics can be illustrated by a mean-field equation. The theoretical predictions are confirmed by our numerical simulations.  相似文献   

11.
In this paper,magnetic and dielectric properties of the quasi-two-dimensional triangular-lattice system CuCrS2 and its B-site-diluted analogs CuAl1?xCrxS2(x = 0.01 and x = 0.02) are investigated.Antiferromagnetic phase transition is observed at about 38.5 K by magnetization measurement without shift induced by a small amount of doping Al.Magnetodielectric effect is found near TN in each of the three compounds.The dielectric constant decreases and the magnetocapacitance increases with the increase of substitution of nonmagnetic Al3+ ions for the magnetic Cr3+ ions.The negative magnetocapacitive effect reaches ~ 13% for CuAl0.02Cr0.98S2.  相似文献   

12.
Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.  相似文献   

13.
DVA (dynamic vibration absorber) is good for restrain of the resonance vibration in low frequency, especially under the condition that there are only one mode or two modes in a frequency band. It seems rather difficult to control the resonance vibration of elastic structures in high frequency, since usually there are so many modes in high frequency band. The broad band DVA is brought forward to reduce the resonance vibration of elastic structures. The broad band DVA is designed on the basis of the characteristic of power flow in structure in this paper. The broad band DVA is effective on absorbing the resonance vibration power flow of the most important modes. The ability of absorbing vibration for the broad band DVA is analyzed in detail. The results obtained in this paper provide a basis for the optimization design of the broad band DVA and the optimization positions on structures.  相似文献   

14.
The verification and calculation of the negative refractive index of a meta-material is carried out by the finitedifference time-domain method. A slab and a prism of the meta-material are simulated. A genuine plane wave is generated by a two-direction periodic boundary condition (PBC) in the slab model. Based on an advanced phase extraction technique, the negative refractive index of the meta-material is verified by phase velocity measurement in the slab and prism measurement. From our results, not only the phenomenon of backward phase propagation but also the negative refraction is clearly observed. The index is also calculated precisely. The results from the two models are consistent.  相似文献   

15.
We study the entanglement trapping of two entangled qubits, each of which is in its own photonic band gap, based on the weak measurement and quantum measurement reversal. An almost maximal entanglement of the two-qubit system can be trapped by using a certain weak measurement strength. Furthermore, we find that the optimal entanglement enhancing is not only dependent on the weak measurement strength but also on the different initial states. The outcomes in our scheme are completely different from that without any measurement on the studied system.  相似文献   

16.
The epitaxial growth of novel GaN-based light-emitting diode(LED) on Si(100) substrate has proved challenging.Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting diode, which is formed on a micro-striped Si(100) substrate by metal organic chemical vapor deposition. By controlling the size of micro-stripe, InGaN/GaN multiple quantum wells(MQWs) with different well widths are grown on semi-polar(1■01)planes. Besides, indium-rich quantum dots are observed in InGaN wells by transmission electron microscopy, which is caused by indium phase separation. Due to the different widths of MQWs and indium phase separation, the indium content changes from the center to the side of the micro-stripe. Various indium content provides the wideband emission. This unique property allows the semipolar InGaN/GaN MQWs to emit wideband light, leading to the near white light emission.  相似文献   

17.
We investigate optical properties of dislocations in nitrogen-doped and nitrogen-free Czochralski silicon. The dislocations are formed during crystal growth, but not formed during deformation. The results show that in nitrogen-doped samples, a broad band replaced the D1 band of dislocation, regardless of dislocation density. The replacement of D1 band is caused by the non-irradiation combination induced by oxygen precipitation. Moreover,a new emission at 0.975 eV is observed in both the nitrogen-free and doped samples when the dislocation density is lower than 104 cm-2.  相似文献   

18.
陈华  汪力 《中国物理快报》2009,26(5):117-120
Application of terahertz time-domain spectroscopy is demonstrated to study the process of Ag2O thermal decomposition. In the process of decomposition, the time-resolved signals are characterized by broad oscillations and decreased intensity, and Tttz pulse essentially contains two broad spectral components: one centered at around 0.35 THz and a band with a maximum at around 0.81 THz shift to 0.71 THz. Optical absorption spectra of different specimens are studied in the frequency range 0.3-1.4 THz and the data are analyzed by the relevant theory of the effective medium approach combined with the Drude-Lorentz model. The analysis suggests that optical properties stem from the Drude term for the metallic phase and the Lorentz term for the insulator phase in the complex system.  相似文献   

19.
A method based on the measurement of Fe average atomic magnetic moment to identify the structural transition caused by the increase of Ga content in quenched Fe 1-x Ga x alloys (0.15 ≤ x ≤ 0.30) is proposed.The quenched Fe 1-x Ga x alloys show a change of the Fe average atomic magnetic moment from 2.25μ B to 1.78μ B and then to 1.58μ B,which corresponds to the structural transition from A2 to D0 3 and then to B2.The relationship between the structure and the magnetostriction is clarified,and the maximum magnetostriction appears in the A2 phase.The variation tendency of the magnetostriction is well characterized,which also reflects the structural transition.  相似文献   

20.
To resolve the conflict of large measurement range and high accuracy in the existing real-time displacement measurement laser diode (LD) interferometers,a novel real-time displacement measurement LD interferom- etry is proposed and its measurement principle is analyzed.By use of a new phase demodulation algorithm and a new phase compensation algorithm of real-time phase unwrapping,the measurement accuracy is im- proved,and the measurement range is enlarged to a few wavelengths.In experiments,the peak-to-peak amplitude of the speaker vibration was 2361.7 nm,and the repeatability was 2.56 nm.The measurement time was less than 26μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号