首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-assembled monolayers (SAMs) of 4,4'-terphenyl-substituted alkanethiols C6H5(C6H4)2(CH2)n-SH (TPn, n = 1-6) on Au (111) substrates were studied using scanning tunneling microscopy (STM) and infrared reflection absorption spectroscopy (IRRAS). When the SAMs were prepared at room temperature (RT, 298 K), TPn films (except TP2) exhibit an odd-even effect regarding both molecular orientation and packing density. For all investigated films, STM data reveals the presence of a large degree of lateral order. In the case of odd-numbered TPns, the films revealed a (2 square root(3) x square root(3))R30 degree molecular arrangement. For the even-numbered TP4 and TP6 SAMs, a c(5 square root(3) x 3) rectangular unit cell was found. The packing density for the even-numbered TPn SAMs is 25% lower than that for the odd-numbered TPn SAMs. When the SAMs were prepared at 333 K, the even-numbered SAMs were found to form structures with a significantly lower packing density. In the case of TP2, instead of the (2 square root(3) x square root(3))R30 degree structure formed at room temperature, a c(5 square root(3) x 3) structure was observed. For TP6 SAMs, the room-temperature c(5 square root(3) x 3) structure was replaced by a (6 square root(3) x 2 square root(3))R30 degree structure.  相似文献   

2.
Self-assembled monolayers (SAMs) formed from semifluorinated dialkyldiselenol (CF(3)(CF(2))(5)(CH(2))(2)Se-)(2) (F6H2SeSeH2F6) on polycrystalline Au(111) and Ag(111) were characterized by high-resolution X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, near edge X-ray absorption fine structure spectroscopy, scanning tunneling microscopy, and contact angle measurements. The Se-Se linkage of F6H2SeSeH2F6 was found to be cleaved upon the adsorption, followed by the formation of selenolate-metal bond. The resulting F6H2Se SAMs are well-ordered, densely packed, and contamination-free. The packing density of these films is governed by the bulky fluorocarbon part, which exhibits the expected helical conformation. A noncommensurate hexagonal arrangement of the F6H2Se molecules with an average nearest-neighbor spacing of about 5.8 +/- 0.2 A, close to the van der Waals diameter the fluorocarbon chain, was observed on Au(111). The orientation of the fluorocarbon chains in the F6H2Se SAMs does not depend on the substrate-the average tilt angle of these moieties was estimated to be about 21-22 degrees on both Au and Ag.  相似文献   

3.
We have studied ion and electron irradiation of self-assembled monolayers (SAMs) of 2-(4'-methyl-biphenyl-4yl)-ethanethiol (BP2, CH3-C6H4C6H4CH2CH2-SH), phenyl mercaptan (PEM, C6H5CH2CH2-SH), and 4'-methyl-biphenyl-4-thiol (BP0, CH3-C6H4C6H4-SH) deposited on Au(111) substrates. Desorption of neutral particles from PEM/Au and BP2/Au was investigated using laser ionization in combination with mass spectrometry. The ion-induced damage of both BP2 and PEM SAMs is very efficient and interaction with a single ion leads to the modification of tens of molecules. This feature is the result of a desorption process caused by a chemical reaction initiated by an ion impact. Both for ions and electrons, experiments indicate that the possibility for scission of the Au-S bond strongly depends on the chemical nature of the SAM system. We attribute the possible origin of this effect to the orientation of the Au-S-C angle or adsorption sites of molecules. The analysis of electron-irradiated PEM/Au and BP2/Au, using ion-initiated laser probing, enabled measurements of the cross section for the electron-induced damage of the intact molecule or specific fragment. Analysis of electron-irradiated BP0/Au by using time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides direct evidence for the quasi-polymerization process induced by electron irradiation.  相似文献   

4.
A systematic series of ITO electrodes modified chemically with self-assembled monolayers (SAMs) of porphyrins and porphyrin-fullerene dyads have been designed to provide valuable insight into the development of artificial photosynthetic devices. First the ITO and gold electrodes modified chemically with SAMs of porphyrins with a spacer of the same number of atoms were prepared to compare the effects of energy transfer (EN) quenching of the porphyrin excited singlet states by the two electrodes. Less EN quenching was observed on the ITO electrode as compared to the EN quenching on the corresponding gold electrode, leading to remarkable enhancement of the photocurrent generation (ca. 280 times) in the porphyrin SAMs on the ITO electrode in the presence of the triethanolamine (TEA) used as a sacrificial electron donor. The porphyrin (H(2)P) was then linked with C(60) which can act as an electron acceptor to construct H(2)P-C(60) SAMs on the ITO surface in the presence of hexyl viologen (HV(2+)) used as an electron carrier in a three electrode system, denoted as ITO/H(2)P-C(60)/HV(2+)/Pt. The quantum yield of the photocurrent generation of the ITO/H(2)P-C(60)/HV(2+)/Pt system (6.4%) is 30 times larger than that of the corresponding system without C(60): ITO/H(2)P-ref/HV(2+)/Pt (0.21%). Such enhancement of photocurrent generation in the porphyrin-fullerene dyad system is ascribed to an efficient photoinduced ET from the porphyrin singlet excited state to the C(60) moiety as indicated by the fluorescence lifetime measurements and also by time-resolved transient absorption studies on the ITO systems. The surface structures of H(2)P and H(2)P-C(60) SAMs on ITO (H(2)P/ITO and H(2)P-C(60)/ITO) have been observed successfully in molecular resolution with atomic force microscopy for the first time.  相似文献   

5.
Self-assembled monolayers (SAMs) of two omega-(4'-methylbiphenyl-4-yl)alkanethiols (CH(3)(C(6)H(4))(2)(CH(2))(n)SH, BPn, n = 4, 6) on Au(111) substrates, prepared from solution at room temperature and subsequently annealed at temperatures up to 493 K under a nitrogen atmosphere, were studied using scanning tunneling microscopy (STM), high-resolution X-ray photoelectron spectroscopy (HRXPS), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). In striking contrast to BPn SAMs with n = odd, for which only one phase is observed, the even-numbered BPn SAMs exhibit polymorphism. Irreversible phase transitions occur which involve three phases differing substantially in density and stability. Upon annealing, BP4 and BP6 transform into a beta-phase, which is characterized by an exceptionally high structural quality with virtually defect-free domains exceeding 500 nm in diameter. Exchange experiments, monitored by contact angle measurement, reveal that the beta-phase exhibits a dramatically improved stability. The fundamental differences in the phase behavior of even- and odd-numbered BPn SAMs are discussed in terms of two design strategies based on cooperative and competitive effects.  相似文献   

6.
This paper presents a novel method for preparing aromatic, mixed self-assembled monolayers (SAMs) with a dilute surface fraction coverage of protonated amine via in situ hydrolysis of C═N double bond on gold surface. Two imine compounds, (4'-(4-(trifluoromethyl)benzylideneamino)biphenyl-4-yl)methanethiol (CF(3)-C(6)H(4)-CH═N-C(6)H(4)-C(6)H(4)-CH(2)-SH, TFBABPMT) and (4'-(4-cyanobenzylideneamino)biphenyl-4-yl)methanethiol (CN-C(6)H(4)-CH═N-C(6)H(4)-C(6)H(4)-CH(2)-SH, CBABPMT), self-assembled on Au(111) to form highly ordered monolayers, which was demonstrated by infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS). A nearly upright molecular orientation for CF(3)- and CN-terminated SAM was detected by near edge X-ray absorption fine structure (NEXAFS) measurements. Afterward, the acidic catalyzed hydrolysis was carried out in chloroform or an aqueous solution of acetic acid (pH = 3). Systematic studies of this hydrolysis process for CN-terminated SAM in acetic acid at 25 °C were performed by NEXAFS measurements. It was found that about 30% of the imine double bonds gradually cleaved in the first 40 min. Subsequently, a larger hydrolysis rate was observed due to the freer penetration of acetic acid in the SAM and resultant more open molecular packing. Furthermore, the molecular orientation in mixed SAMs did not change during the whole hydrolysis process. This partially hydrolyzed surface contains a controlled amount of free amines/ammonium ions which can be used for further chemical modifications.  相似文献   

7.
Self-assembled monolayers (SAMs) of the disulfide [S(CH2CH2O)6CH3]2 ([S(EO)6]2) on Au from 95% ethanol and from 100% water are described. Spectroscopic ellipsometry and reflection-absorption infrared spectroscopy indicate that the [S(EO)6]2 films are similar to the disordered films of HS(CH2CH2O)6CH3 ((EO)6) and HS(CH2)3O(CH2CH2O)5CH3 (C3EO5) at their protein adsorption minima. The [S(EO)6]2 SAMs exhibit constant film thickness (d) of 1.2 +/- 0.2 nm over long immersion times (up to 20 days) and do not attain the highly ordered, 7/2 helical structure of the (EO)6 and C3EO5 SAMs (d = 2.0 nm). Exposure of these self-limiting [S(EO)6]2 SAMs to bovine serum albumin show high resistance to protein adsorption.  相似文献   

8.
The structural order and ordering conditions of the self-assembled monolayers (SAMs) of HSCH2CH2CH2O(EO)xCH3, where EO = CH2CH2O and x = 3-9, on polycrystalline gold (Au) were determined by reflection-absorption infrared spectroscopy (RAIRS), spectroscopic ellipsometry (SE), and electrochemical impedance spectroscopy. For x = 5-7, RAIRS and SE data show that the oligo(ethylene oxide) [OEO] segments adopt the near single phase, 7/2 helical conformation of the folded-chain crystal polymorph of crystalline poly(ethylene oxide), oriented normal to the substrate. These SAMs exhibit OEO segment structure and orientation identical to that found in a previous isostructural series [HS(CH2CH2O)6-8C18H37 SAMs. Vanderah, D. J., et al. Langmuir 2003, 19, 3752] and are anisotropic films for surface science metrology where structure is constant and thickness increases in 0.30 nm increments. In addition, this is the first example of OEO SAMs to attain this highly ordered, helical conformation where the (EO)x segment is separated from the Au-sulfur headgroup by a polymethylene chain. For x = 4, 8, and 9, the SAMs are largely helical but show evidence of nonhelical conformations and establish the upper and lower limits of the isostructural set. For x = 3, the SAMs are largely disordered containing some all-trans conformation. SAM order as a function of immersion time from 100% water and 95% ethanol indicates that the HSCH2CH2CH2O(EO)5-7CH3 SAMs order faster and under a wider range of conditions than omega-alkyl 1-thiaolio(ethylene oxide) [HS(EO)xCH3] SAMs, reported earlier (Vanderah, D. J., et al. Langmuir 2002, 18, 4674 and Vanderah, D. J., et al. Langmuir 2003, 19, 2612).  相似文献   

9.
Two anion receptors, 1 and 2, based on the calix[6]crown-4 architecture were synthesized and characterized by NMR (1H, 13C, COSY), UV-vis, and MALDI-MS. 1H NMR measurements demonstrate that receptors 1 and 2 exhibit the highest binding affinity for fluoride ions compared to other anions including Cl-, Br-, NO3-, HSO4-, H2PO4-, and AcO-. The binding constants of 1 with F- and AcO- are 326 (+/-32) and 238 (+/-23) M-1, whereas those of 2 with F- and AcO- are 222 (+/-25) and 176 (+/-21) M-1. The fluorescent titration of 2 with various anions such as Cl-, Br-, NO3-, HSO4-, and H2PO4- led to essentially no change in excimer emission and a slight enhancement of monomer emission. In contrast, a dramatic change was observed in the fluorescence spectra upon the addition of F- and AcO- to 2. Self-assembled monolayers (SAMs) of 1 were formed on gold surfaces and characterized by reductive desorption and other techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were used to monitor anion recognition by the SAM-modified gold electrodes. The gold electrodes modified by SAMs of 1, upon binding with the F- anion, exhibit a dramatic increase in charge-transfer resistance (Rct) values. This is due to the repulsion between the negatively charged electrode surfaces and the negatively charged Fe(CN)6(3-/4-) redox probe in the electrolyte solution. In contrast, smaller increases in Rct values were observed in the cases of other monovalent anions investigated.  相似文献   

10.
研究了1,2,5-硒二唑并[3,4-b]吡啶(SPb),1,2,5-硒二唑并[3,4-d]嘧啶-7-(5H,6H)酮(SPO),1,2,5.硒二唑并[3,4.d]嘧啶-5,7-(4H,6H)二酮(SPDO)等多氮硒杂环化合物在溶液中及其在金表面的自组装单分子膜的电化学性质。以Fe(CN)6^3-/4-为离子探针,利用CV法观察了Fe(CN)6^3-/4-氧化还原峰的变化。结果表明,在溶液中,电极过程主受吸附控制;自组装膜的电化学信号与其溶液相似,在-600mV左右都有一还原峰,表明该类化合物有相似的组装模式,其中SPO和SPDO在金表面形成了致密的单分子膜,有效地封闭了表面与溶液之间的电子交换和传递。  相似文献   

11.
Three nido-decaborane thiol cluster compounds, [1-(HS)-nido-B(10)H(13)] 1, [2-(HS)-nido-B(10)H(13)] 2, and [1,2-(HS)(2)-nido-B(10)H(12)] 3 have been characterized using NMR spectroscopy, single-crystal X-ray diffraction analysis, and quantum-chemical calculations. In the solid state, 1, 2, and 3 feature weak intermolecular hydrogen bonding between the sulfur atom and the relatively positive bridging hydrogen atoms on the open face of an adjacent cluster. Density functional theory (DFT) calculations show that the value of the interaction energy is approximately proportional to the number of hydrogen atoms involved in the interaction and that these values are consistent with a related bridging-hydrogen atom interaction calculated for a B(18)H(22)·C(6)H(6) solvate. Self-assembled monolayers (SAMs) of 1, 2, and 3 on gold and silver surfaces have been prepared and characterized using X-ray photoelectron spectroscopy. The variations in the measured sulfur binding energies, as thiolates on the surface, correlate with the (CC2) calculated atomic charge for the relevant boron vertices and for the associated sulfur substituents for the parent B(10)H(13)(SH) compounds. The calculated charges also correlate with the measured and DFT-calculated thiol (1)H chemical shifts. Wetting-angle measurements indicate that the hydrophilic open face of the cluster is directed upward from the substrate surface, allowing the bridging hydrogen atoms to exhibit a similar reactivity to that of the bulk compound. Thus, [PtMe(2)(PMe(2)Ph)(2)] reacts with the exposed and acidic B-H-B bridging hydrogen atoms of a SAM of 1 on a gold substrate, affording the addition of the metal moiety to the cluster. The XPS-derived stoichiometry is very similar to that for a SAM produced directly from the adsorption of [1-(HS)-7,7-(PMe(2)Ph)(2)-nido-7-PtB(10)H(11)] 4. The use of reactive boron hydride SAMs as templates on which further chemistry may be carried out is unprecedented, and the principle may be extended to other binary boron hydride clusters.  相似文献   

12.
We have characterized the solution-phase and dry storage stability of electrochemical E-DNA sensors fabricated using mixed self-assembled monolayers (SAMs) composed of 6- or 11-carbon (C6 and C11, respectively) alpha,omega-thiol alcohols and the analogous C6- or C11-thiol-terminated stem-loop DNA probe. We find that the solution-phase and dry storage stability of C6-based E-DNA sensors are limited and poorly reproducible. The use of stabilizing agents bovine serum albumin plus either glucose or trehalose significantly improves the dry storage shelf life of such sensors: when using these preservatives, we observe only 7-9% sensor degradation after 1 month of storage in air at room temperature. In comparison, the stability of C11-based E-DNA sensors is significantly greater than that of the C6-based sensors; we observe only minor (5-8%) loss of signal upon storing these sensors for a week under ambient solution conditions or for more than a month in air in the presence of preservatives. Moreover, whereas the electron-transfer rate through C11 SAMs is slower than that observed for C6 SAMs, it is rapid enough to support good sensor performance. It thus appears that C11 SAMs provide a reasonable compromise between electron-transfer efficiency and sensor stability and are well suited for use in electronic DNA-sensing applications.  相似文献   

13.
The supramolecular self-assembled monolayers (SAMs) of C(60) by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C(60) monoanion. The results indicate that monoanionic C(60) plays a crucial role in the formation of the C(60)-containing self-assembled monolayers. The generation of C(60) monoanion and the formation process of C(60) SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C(60) SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C(60) by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C(60). The new C(60) SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C(60) on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C(60) over the thiolated beta-CD SAMs. The surface hydrophobicity increased greatly upon the formation of the C(60)-containing SAMs as analyzed by water contact angle measurements. The results are in agreement with the formation of 1:1 complex of C(60) and cyclodextrin on gold surfaces, though it also reveals some non-homogeneous features of the monolayers.  相似文献   

14.
To build highly specific surfaces using aptamer affinity reagents, the effects of linker and coadsorbents were investigated for maximizing target binding and specificity for aptamer-based self-assembled monolayers (SAMs) supported on gold. An aptamer that binds the protein thrombin was utilized as a model system to compare different mixed monolayer systems toward maximizing binding and selectivity to the immobilized aptamer. Important factors used to optimize binding characteristics of thrombin to the aptamer-based monolayer films include changes in design elements of the linker and different coadsorbent thiols. Binding events measured by surface plasmon resonance (SPR) and ellipsometry showed that the binding performance of the aptamer SAMs depends principally on the linker and to a lesser extent on the coadsorbent. SAMs formed with HS-(CH2)6-OP(O)2O-(CH2CH2O)6-TTTTT-aptamer exhibited a 4-fold increase in binding capacity versus SAMs made using HS-(CH2)6-TTTTT-aptamer. Furthermore, SAMs made using HS-(CH2)6-OP(O)2O-(CH2CH2O)6-TTTTT-aptamer showed nearly complete specificity for thrombin versus bovine serum albumin (BSA, less than 2% bound), while a SAM incorporating a random DNA fragment (HS-(CH2)6-OP(O)2O-(CH2CH2O)6-TTTTT-RANDOM) showed little binding of thrombin. Irrespective of the aptamer-linker system, use of HS-(CH2)11(OCH2CH2)3OH, referred to as EG(3), as a coadsorbent enhanced binding of thrombin by approximately 2.5-fold compared to that of HS-(CH2)6-OH (mercaptohexanol, MCH).  相似文献   

15.
Self-assembled monolayers (SAMs) of 4,4'-thiobisbenzenethiol (TBBT) can be formed on Au surface spontaneously. The structural characteristics and adsorption behavior of TBBT SAMs on Au have been investigated by surface enhanced Raman scattering (SERS), electrochemical cyclic voltammetry (CV), ac impedance spectroscopy (EIS), and atomic force microscopy (AFM). It is demonstrated that TBBT adsorbed on Au by losing a H atom, forming one Au-S bond, and the other mercapto group is free at the surface of the monolayer owing to the presence of the nu(S-H) at 2513 cm(-1) and the delta(C-S-H) at 910 cm(-1) in SERS. The enhancement of the vibration of C-S (1064 cm(-1)), the aromatic C-H vibration (3044 cm(-1)), and the absence of the vibration of S-S illustrate TBBT adsorbed on Au forming a monolayer with one benzene ring tilted with respect to the Au surface. The interpretation of the observed frequencies is aided by ab initio molecular orbital (MO) calculations at the HF/6-31G level of theory. Electrochemical CV and EIS indicate TBBT monolayers can passivate the Au effectively for its low ratio of pinhole defects (theta = 99.6%). AFM studies give details about the surface morphology. The applications of TBBT SAMs have been extensively investigated by exposure of Cu2+ ion to TBBT SAMs on Au and covalent adsorption of metal nanoparticles. Electrochemical, X-ray photoelectron spectroscopic, and SERS results indicate that Cu2+ can react with TBBT SAMs and present on TBBT SAMs as Cu(I). A scanning electron microscopic image of Ag nanoparticles on TBBT/Au and the Raman spectrum of TBBT in smooth macroscopic Au/TBBT SAMs/Ag nanoparticle sandwich structure indicate that metal nanoparticles can be adsorbed on TBBT SAMs effectively through covalent linkage.  相似文献   

16.
Extensive ab initio modeling has been performed to explain quantitatively the apparent shapes of characteristic bands, which are systematically observed in the fingerprint region of infrared (IR) reflection-absorption (RA) spectra of oligo(ethylene glycol) (OEG)-terminated SAMs. The presence of defects was thoroughly examined by modeling the RA spectra using the DFT method BP86/6-31G* for all-helical and all-trans conformers of HS(CH2CH2O)nR (n = 5, 6, R = H, CH3) and HS(CH2)15CONH(CH2CH2O)6H molecules and for several defect-containing conformers. These data were then used to simulate RA spectra of SAMs with different content of defects and to compare them with experiments. It is shown that for SAMs of HS(CH2CH2O)nCH3 (n = 5, 6) the pronounced asymmetry of the dominating band can be attributed to the multimode nature of COC stretching vibrations of helical conformers combined with the contribution from few percent of all-trans conformers. Arguments are presented which disprove appreciable amounts of helical conformers with single trans and/or gauche defects. Much more complex combination of factors, which can come into play in the formation of the high-frequency shoulder of COC band, is exemplified by self-assemblies of OEG-terminated amide-bridged alkanethiolates. In particular, spectral signatures of defects with inverted OH terminus are compared with other contributions to the apparent shape of COC band formation. For this family of SAMs, the presence of about 10% of all-trans conformers gives a satisfactory quantitative agreement between the calculated RA spectra and experimental observations.  相似文献   

17.
[reaction: see text] Two new calix[6]arene derivatives 3 and 4 in a 1,4-anti conformation and one calix[8]arene derivative 5 were synthesized. SAMs of calix[n]arene (n = 4, 6, 8) derivatives 1-5 were formed on gold bead electrodes. Cyclic voltammetry with Ru(NH3)6(3+/2+) as a redox probe, together with impedance spectroscopy and reductive desorption, indicates that SAMs of 5 have a higher coverage than those of 3 and 4 due to the presence of hydrogen bonding and possibly its conformation. Noncovalent immobilization of C60 on gold surfaces was achieved with SAMs of calix[8]arene derivative 5 but not with those of 1-4.  相似文献   

18.
In this work, we have studied the growth of self-assembled monolayers (SAMs) on silicon dioxide (SiO(2)) made of various long alkyltrichlorosilane chains (16, 18, 20, 24, and 30 carbon atoms in the alkyl chain), at several values of temperature (11 and 20 °C in most cases) and relative humidity (18 and 45% RH). Using atomic force microscopy analysis, thickness measurements by ellipsometry, and contact angle measurements, we have built a model of growth behaviour of SAMs of those molecules according to the deposition conditions and the chain length. Particularly, this work brings not only a better knowledge of the less studied growth of triacontyltrichlorosilane (C(30)H(61)SiCl(3)) SAMs but also new results on SAMs of tetracosyltrichlorosilane (C(24)H(49)SiCl(3)) that have not already been studied to our knowledge. We have shown that the SAM growth behaviour of triacontyltrichlorosilane at 20 °C and 45% RH is similar to that obtained at 11 °C and 45% RH for shorter molecules of hexadecyltrichlorosilane (C(16)H(33)SiCl(3)), octadecyltrichlorosilane (C(18)H(37)SiCl(3)), eicosyltrichlorosilane (C(20)H(41)SiCl(3)) and tetracosyltrichlorosilane (C(24)H(49)SiCl(3)). We have also observed that the monolayers grow faster at 45% than at 18% RH, and surprisingly slower at 20 °C than at 11 °C. Another important result is that the growth time constant decreases with the number of carbon atoms in the alkyl chain except for C(24)H(49)SiCl(3) at 11 °C and 18% RH, and for C(30)H(61)SiCl(3). To our knowledge, such a chain length dependence of the growth time constant has never been reported. The latter and all the other results are interpreted by adapting a diffusion limited aggregation growth model.  相似文献   

19.
Self-assembled monolayers (SAMs) on gold surfaces based on three kinds of acetylthio-surfactant-encapsulated polyoxometalate clusters (thio-SECs) terminated with multiple CH(3)COS- groups, (NC(26)H(55)S(CO)CH(3))(6)H(2)[Co(H(2)O)CoW(11)O(39)], (NC(26)H(55)S(CO)CH(3))(13)H(3)[Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)], and (NC(26)H(55)S(CO)CH(3))(13)[Fe(4)(H(2)O)(2)(P(2)W(15)O(56))(2)]Br, have been prepared, which is representative of a general methodology to fabricate polyoxometalate-based SAMs. Thio-SECs self-assembled into monolayers on gold surfaces through the hydrolysis of CH(3)COS- groups and the subsequent formation of S-Au bonds, which was confirmed by grazing angle infrared spectroscopy, X-ray photoelectron spectroscopy, and ellipsometric and scanning tunneling microscopy (STM) measurements. Furthermore, the SAMs of the thio-SECs possess closely packed structures, and the local short-range order is clearly observed in the magnified STM image. We have also investigated the electrochemical behavior of SAMs of thio-SECs by cyclic voltammetry in detail, and the redox potential of the original polyoxometalates has been well retained. The electrochemical signals of the SAMs are very weak because of the small moiety of thio-SECs that are electrochemically accessible in the cyclic voltammetry experiments. The polyoxometalate-modified electrodes that we prepared are not only highly ordered in the local short range but also stable in electrochemical cycling because of the multiple S-Au bonds of thio-SECs on the gold substrates that aid in the construction of functional materials such as electrochemical and electrocatalytic devices.  相似文献   

20.
In-situ spectroscopic ellipsometry (SE) was utilized to examine the formation of the self-assembled monolayers (SAMs) of the water-soluble oligo(ethylene oxide) [OEO] disulfide [S(CH(2)CH(2)O)(6)CH(3)](2) {[S(EO)(6)](2)} and two analogous thiols - HS(CH(2)CH(2)O)(6)CH(3) {(EO)(6)} and HS(CH(2))(3)O(CH(2)CH(2)O)(5)CH(3) {C(3)(EO)(5)} - on Au from aqueous solutions. Kinetic data for all compounds follow simple Langmuirian models with the disulfide reaching a self-limiting final state (d=1.2nm) more rapidly than the full coverage final states of the thiol analogs (d=2.0nm). The in-situ ellipsometric thicknesses of all compounds were found to be nearly identical to earlier ex-situ ellipsometric measurements suggesting similar surface coverages and structural models in air and under water. Exposure to bovine serum albumin (BSA) shows the self-limiting (d=1.2nm) [S(EO)(6)](2) SAMs to be the most highly protein resistant surfaces relative to bare Au and completely-formed SAMs of the two analogous thiols and octadecanethiol (ODT). When challenged with up to near physiological levels of BSA (2.5mg/mL), protein adsorption on the final state [S(EO)(6)](2) SAM was only 3% of that which adsorbed to the bare Au and ODT SAMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号