首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new in-house designed and constructed injection valve for capillary electrochromatography (CEC) based on a rotating injection part with compartments for the eluent as well as for the sample has been coupled to a mass spectrometer via a sheath flow electrospray ionisation (ESI) interface, using short capillary columns of 15 cm length. The CEC columns were packed with 3 microm C(18) bonded silica particles, and a mixture of peptides was analysed using an ammonium acetate/acetonitrile eluent. A significant increase in the signal-to-noise ratio was obtained when the peptides were dissolved in water with the same content of organic modifier as in the eluent with an addition of 0.5% (v/v) acetic acid. When the CEC analysis was performed without any additional pressure, the separation current sometimes dropped tremendously due to bubble formation, caused by different permeability in the first and packed part of the column causing an extremely low electroosmotic flow. The separation current was restored to its original value by applying only 7 bar at the inlet of the CEC column, and the separation performance for the test peptides was recovered. A comparison of the CEC performance of peptides in pure CEC mode and in low-pressure CEC mode is reported.  相似文献   

2.
A test system has been established to permit the monitoring of the life-time performance of several reversed- phase capillary electrochromatography (CEC) columns. The retention factors, k(cec), peak symmetry coefficients, lambda(sym), and column efficiencies, N, of three neutral n-alkylbenzene analytes, namely ethyl-, n-butyl- and n-pentylbenzenes, were determined for Hypersil 3 microm n-octylsilica and n-octadecylsilica packed into CEC capillary columns of 100 microm I.D., with a packed length of 250 mm, and a total length of 335 mm. The performances of these CEC capillary columns were examined for a variety of eluents with pH values ranging between pH 2.0 - 8.0, similar to those employed to study the retention behaviour of peptides that we have previously reported. The relative standard deviation (RSD) of the retention factors (k(cec) values) of these n-alkylbenzenes, acquired with an eluent of (25 mM Tris-HCl, pH 8.0,)-acetonitrile (1:4, v/v), when the CEC capillary columns were used for the first time (virgin values), were 4% (based on data acquired with 4 CEC capillary columns) for the n-octyl bonded silica capillary columns, and 6% (based on 8 columns) for n-octadecyl bonded silica capillary columns. The RSD values of the k(cec) values of the n-alkylbenzenes for one set of replicates (n=6) with one CEC capillary column was < 0.5%. The theoretical plate numbers, N, for the virgin CEC capillary columns were ca. 60,000, whilst the observed N values for all new CEC capillary columns were > or = 40,000 for n-octyl bonded silica capillary columns and > or = 50,000 for n-octadecyl bonded silica capillary columns. The peak symmetry coefficients, lambda(sym), of the n-alkylbenzenes for virgin CEC capillary columns and for CEC capillary columns used for more than 1,000 injections were always in the range 0.95-1.05. The experimental results clearly document that the life-time performance of the CEC capillary columns depends on the eluent composition, as well as the nature of the analytes to which the CEC capillary columns are exposed.  相似文献   

3.
In this paper, the simultaneous separation of several polyphenols such as (+)‐catechin, (–)‐epicatechin, (–)‐epigallocatechin, theophylline, caffeine in green and black teas by capillary electrochromatography (CEC) was developed. Several experimental parameters such as stationary phase type, mobile phase composition, buffer and pH, inner diameter of the columns, sample injection, were evaluated to obtain the complete separation of the analysed compounds. Baseline resolution of the studied polyphenols was achieved within 30 min by using a capillary column (id 100 μm) packed with bidentate C18 particles for 24.5 cm and a mobile phase composed of 5 mM ammonium acetate buffer pH 4 with H2O/ACN (80:20, v/v). The applied voltage and the temperature were set at 30 kV and 20°C. Precision, detection and quantification limits, linearity, and accuracy were investigated. A good linearity (R2 > 0.9992) was achieved over a concentration working range of 2–100 μg/mL for all the analytes. LOD and LOQ were 1 and 2 μg/mL, respectively, for all studied compounds. The CEC method was applied to the analysis of those polyphenols in green and black tea samples after an extraction procedure. Good recovery data from accuracy studies ranged between 90% and 112% for all analytes.  相似文献   

4.
This paper describes the preparation and optimization of packed capillary columns for reversed‐phase separation of steroids with CEC. The fabrication of on‐column frits is considered to be the most important step for obtaining a reproducible packed column for CEC separation. Porous silicate frits were generated in a fused‐silica capillary by heating the silica gel/sodium hydroxide solutions electrically. The optimized conditions involve silica gel (10.8%), sodium hydroxide (5.8%), and heating time (5 sec) with heating voltage (5V) for obtaining a 100‐μ end‐frit that can withstand pressure over 6000 psi. A HPLC pump was utilized to pack the 5‐μm ODS particle slurry into the capillary column. The ODS packed capillaries were then utilized for the separation of four anabolic cholesterols with a capillary electrophoresis system without pressurization of the column. The reproducibility of the packed columns was evaluated by measuring the relative standard deviations of four steroids. The relative standard deviations of migration time for column‐to‐column, day‐to‐day, and run‐to‐run are less than 7%, 2%, and 1% for four steroids, respectively.  相似文献   

5.
The novel separation of a 3-hydroxyproline containing a semi-synthetic macrocyclic antifungal agent from its structurally related 4-hydroxyproline isomer using capillary electrochromatography (CEC) is described. The molecular weight of the two compounds is 1093 Daltons and they differ only in the placement of a proline -OH group. The separation is achieved using capillaries packed or coated with ODS particles (C18) or with glycerol bound to silica through a carbon chain linker. The presence of a transition metal (Ni(II), Ag(I), Zn(II), or Cu(II)) as buffer additive in the phosphate buffer (pH=2.5):CH3CN (75:25, v/v) is essential to achieve a baseline separation. HPLC columns packed with similar ODS particles showed no selectivity. Capillaries packed or coated with C18 material under similar conditions showed partial selectivity compared to the glycerol capillaries. Some fundamental aspects of CEC, such as capillary temperature, applied voltage, and buffer composition were varied in order to study the mechanism of the separation. This mechanistic study included the testing of first and second row transition metal ions (individually or in combination), the use of organic solvents, the use of an ion pair reagent, and the use of β- and γ-cyclodextrin to assess the impact on the separation. The resolution was dependent on the metal ion concentration and is consistent with a mechanism of metal-oxygen complexation through the hydroxyl groups of the two isomers and glycerol.  相似文献   

6.
N. Wu  R. Yee  M. L. Lee 《Chromatographia》2000,53(3-4):197-200
Summary Fast separations of perfluorinated polyethers and polymethylsiloxanes that are composed of 50–80 oligomers were demonstrated in packed capillary column supercritical fluid chromatography (SFC) using a carbon dioxide mobile phase. Separations were accomplished within 10 min using a 13 cm×250 μm i.d. column packed with 2 μm porous octadecyl bonded silica (ODS) particles. Effects of particle diameter of the packing material and pressure programming on separation were investigated, and packed column SFC was compared with open tubular column SFC. Results show that as the particle diameter was decreased from 5 to 3 to 2 μm and the column length was reduced from 85 to 43 to 13 cm, the separation time could be reduced from 70 to 20 to 10 min while still maintaining similar separation (resolution). Short columns packed with small porous particles are very suitable for fast SFC separations of polymers.  相似文献   

7.
Fiber-packed capillary columns have been evaluated in chromatographic performance in capillary electrochromatography (CEC). The change of electroosmotic flow (EOF) velocity and selectivity using different kinds of fiber materials was examined. Although the EOF velocity among the different fiber packed columns was almost the same, retention of parabens was larger on the Kevlar-packed column than on the Zylon-packed one, and was larger on the as-span-type fiber-packed column than on the high-modulus-type packed one. Using 200 microm ID x 5 cm Kevlar packed column combined with a 100 microm ID x 20 cm precolumn capillary and a 530 microm ID x 45 cm postcolumn capillary, the separation of three parabens within 30 s was achieved. Other compounds were also separated in a few minutes by the fiber-packed CEC method.  相似文献   

8.
《Electrophoresis》2018,39(7):933-940
Graphene oxide functionalized silica microspheres (GO@SiO2) were synthesized based on condensation reaction between amino from aminosilica particles and carboxyl groups from GO. Reduction of GO@SiO2 with hydrazinium hydroxide generated graphene modified silica particles (G@SiO2). GO@SiO2 and G@SiO2 packed capillary columns for capillary electrochromatography were thereafter fabricated by pressure slurry packing with single‐particle frits. GO of 0.3 mg/mL in dispersion solution for GO@SiO2 synthesis was considered as a compromise between retaining and column efficiency whereas GO@SiO2 of 20 mg/mL in slurries for column packing was chosen for a homogenous and tight bed. Optimum mobile phases were acquired considering both electroosmotic flow and resolution at an applied voltage of −6 kV as the following: acetonitrile/phosphate buffer (10 mM, pH 7.0), 75:25 (v/v) for polycyclic aromatic hydrocarbons and 50:50 (v/v) for aromatic compounds. A comparison was made between electrochromatographic performances for three PAHs (naphthalene, fluorene and phenanthrene) and three aromatic compounds of various polarities (toluene, aniline and phenol) on bare aminosilica, GO@SiO2 and G@SiO2 packed columns, which proved the contribution of alone or combinational actions of solvophobic effect and π‐π electron stacking as well as hydrogen bonds to retaining behaviors by GO@SiO2 and G@SiO2. Well over‐run, over‐day and over‐column precisions (retention time: 0.3–1.4, 1.1–3.8 and 2.8–5.2%, respectively; peak area: 2.6–6.5, 4.8–8.3 and 6.5–12.6%, respectively) of GO@SiO2 packed columns were a powerful proof for good reproducibility. Analytical characteristics of GO@SiO2 packed capillary columns in CEC analysis of fresh water were evaluated with respect to linearity (R2 = 0.9961–0.9989) over the range 0.1 to 100 mg/L and detection limits of 9.5 for naphthalene, 12.6 for fluorene and 16.2 μg/L for phenanthrene. Further application to fresh water increased the visibility of the proposed material, where good spike recoveries in the range 89–96% were offered.  相似文献   

9.
Column technology for capillary electrochromatography   总被引:4,自引:0,他引:4  
Column technologies for capillary electrochromatography (CEC) are reviewed. To achieve high efficiency, the inner diameters of open-tubular and packed columns should be less than 25 and 200 μm, respectively. To obtain acceptable separation speed under typical CEC conditions (e.g. 30 kV, 1 mm s−1 electroosmotic flow velocity, and 2–4×10−8 m2 V−1 s−1 electroosmotic mobility) the column lengths for open-tubular and packed columns should be less than 120 and 60 cm, respectively. Capillary CEC columns are generally classified into three types: packed, open-tubular, and continuous-bed or monolithic. The various column preparation procedures and the advantages and disadvantages of each column type are discussed in detail.  相似文献   

10.
Three chiral compounds were successfully separated in a short time with two enantiomer separation models on packed-capillary electrochromatography (CEC). (i) 75 μm I.D. capillaries were packed with 5 μm β-cyclodextrin (βCD) chiral stationary phase (CSP). Effects of voltage, pH and concentration of organic modifier on electroosmotic flow (EOF) and chiral separations were investigated systematically. Enantiomers of a neutral compound (benzoin) and a neutral drug (mephenytoin) were separated within a short time with high efficiency. Efficiency of 32 000 theoretical plates per meter and resolution (R8) of 1.42 were achieved for enantiomers of benzoin using a βCD packed column with 6.2crn packed length. Efficiency of 45 000 theoretical plates per meter andR8 of 3.40 were obtained for enantiomers of mephenytoin. Especially, the enantiomer separation of mephenytion was performed in just 3.4 min with R8 of 2.60. (ii) 75 μm I.D. capillary was packed with octadecylsilica particles (ODs). Chiral separation of a basic drug, propranolol, was studied with chiral agent, via addition of the dimethyl-β-cyclodextrin (DM β-CD) directly into the mobile phase on this column. Baseline separation and efficiency of 81 000 theoretical plates per meter were achieved for propranolol. Project supported by the Natural Science Foundation of Liaoning Province, China, the National Natural Science Foundation of China (Grant No.29875030), and the Excellent Young Scientist Award from the National Natural Science Foundation of China. (Grant No.29725512).  相似文献   

11.
N. Wu  Q. Tang  Y. Shen  M. L. Lee 《Chromatographia》1999,49(7-8):431-435
Summary In this paper, practical considerations of column efficiency, separation speed, thermal stability, and column polarity of capillary columns packed with polybutadiene-coated zirconia were investigated under solvating gas chromatography (SGC) conditions using carbon dioxide as mobile phase. When compared with results obtained from conventional porous octadecyl obtained from conventional porous octadecyl bonded silica (ODS) particles, PBD-zirconia particles produced greater change in mobile phase linear velocity with pressure than conventional ODS particles under the same conditions. The maximum plate number per second (Nt) obtained with a 30 cm PBD-zirconia column was approximately 1.5 times higher than that obtained with an ODS column at 100 °C. Therefore, the PBD-zirconia phase is more suitable for fast separations than conventional ODS particles in SGC. Maximum plate numbers per meter of 76,900 and 63,300 were obtained using a 57 cm×250 μm i.d. fused silica capillary column packed with 3 μm PBD-zirconia at 50 °C and 100 °C, respectively. The PBD-zirconia phase was stable at temperatures up to 320 °C under SGC conditions using carbon dioxide as mobile phase. Polarizable aromatic compounds and low molecular weight ketones and aldehydes were eluted with symmetrical peaks from a 10 cm column packed with 3 μm PBD-zirconia. Zirconia phases with greater inertness are required for the analysis of more polar compounds by SGC.  相似文献   

12.
For Part II of our ongoing study, we present a strategy for stationary phase optimization for the capillary electrochromatographic (CEC) separation of the 12 methylated benzo[a]pyrene (MBAP) isomers. Utilizing the optimum mobile phase conditions from Part I of our study as a guide, seven commercially available stationary phases have been evaluated for their ability to separate highly hydrophobic MBAP isomers. Ranging in design from high-performance liquid chromatography (HPLC) to CEC application, each phase was slurry packed in house and tested for CEC suitability and performance. Several stationary phase parameters were investigated for their effects on MBAP separation including bonding type (monomeric or polymeric, % carbon loading, surface coverage), pore size, particle size, and type of alkyl substituent. In this manner, the present state of commercially available packings has been assessed in our laboratory. Utilizing the optimum polymeric C18-5 microm-100 A-PAH stationary phase, the effects of CEC packed bed length and capillary inside diameter (I.D.) were also evaluated. A 50 microm I.D. capillary, 25 cm packed bed length and 75% (v/v) acetonitrile, 12.5 mM Tris, pH 8.0, 20 degrees C at 30 kV, provided resolution of 11 out of 12 MBAP isomers thus showing the effectiveness of CEC for analysis of structurally similar methylated polyaromatic hydrocarbons.  相似文献   

13.
Capillary electrochromatography (CEC), which combines the advantages of the high efficiency of capillary electrophoresis (CE) and the high selectivity of liquid chromatography (LC), has recently received considerable attention. Most CEC experiments have been performed with capillary columns packed with small LC packing materials (1.5–5 μm particle diameter). However, problems such as difficulties in packing the small LC packing materials and fabricating the frits still exist in preparing the CEC column. The use of open-tubular columns in CEC is therefore an alternative approach that can eliminate the problems encountered in packed-column CEC. So far, several types of open-tubular columns have been proposed for CEC separations and in this article recent progress in this area is reviewed.  相似文献   

14.
Summary Packed columns containing microparticles provide high column efficiency per unit time and strong retention characteristics compared with open tubular columns, and they are favored for fast separations. Nonporous particles eliminate the contribution of solute mass transfer resistance in the intraparticle void volume characteristic of porous particles, and they should be more suitable for fast separations. In this paper, the evaluation of nonporous silica particles of sizes ranging from 5 to 25 μm in packed capillary columns for fast supercritical fluid chromatography (SFC) using neat CO2 is reported. These particles were first deactivated using polymethyl-hydrosiloxanes and then encapsulated with a methylphenylpolysiloxane stationary phase. The retention factors, column efficiencies, column efficiencies per unit time, separation resolution, and separation resolution per unit time for fast SFC were determined for various length capillaries packed with various sizes of polymerencapsulated nonporous particles. It was found that 15 μm nonporous particles provided the highest column efficiency per unit time and resolution per unit time for fast packed capillary SFC. Under certain conditions, separations were completed in less than 1 min. Several thermally labile silylation reagent samples were separated in times less than 5 min. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

15.
The feasibility of using capillary columns equipped with silica frits and packed with a polymer-based anion exchanger (Dionex AS9-HC) for CEC separations of inorganic anions has been investigated. Experiments using a conventional 25 cm packed bed, and mobile phase flow that is a combination of hydrodynamic and electroosmotic flow were used to demonstrate that by varying the applied voltage (electrophoresis component) or the concentration of the competing ion in the mobile phase (ion-exchange component), considerable changes in the separation selectivity could be obtained. Using an artificial neural network, this separation system was modelled and the results obtained used to determine the optimum conditions (9 mM perchlorate and −10 kV) for the separation of eight inorganic anions. When a short (8 cm) packed bed was used, with detection immediately following the packed section, the separation of eight test analytes in under 2.2 min was possible using pressure-driven flow and a simple step voltage gradient. A more rapid separation of these analytes was obtained by only applying high voltage (−30 kV), where many of the same analytes were separated in less than 20 s and with a different separation selectivity to that obtained in conventional ion-exchange or capillary electrophoresis separations.  相似文献   

16.
The overall kinetic performance of three production columns (2.1 mm × 100 mm format) packed with 1.6 μm superficially porous CORTECS‐C18+ particles was assessed on a low‐dispersive I‐class ACQUITY instrument. The values of their minimum intrinsic reduced plate heights (hmin = 1.42, 1.57, and 1.75) were measured at room temperature (295 K) for a small molecule (naphthalene) with an acetonitrile/water eluent mixture (75:25, v/v). These narrow‐bore columns provide an average intrinsic efficiency of 395 000 plates per meter. The gradient separation of 14 small molecules shows that these columns have a peak capacity about 25% larger than similar ones packed with fully porous BEH‐C18 particles (1.7 μm) or shorter (50 mm) columns packed with smaller core–shell particles (1.3 μm) operated under very high pressure (>1000 bar) for steep gradient elution (analysis time 80 s). In contrast, because their permeabilities are lower than those of columns packed with larger core–shell particles, their peak capacities are 25% smaller than those of narrow‐bore columns packed with standard 2.7 μm core–shell particles.  相似文献   

17.
In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which indicated that the chromatographic properties of the silica packing material were still active after polymerization. The prepared capillary columns were found to be stable and could easily be operated continuously up to a pressure of 350 bar without column damage and capillary can be cut to any desired length.  相似文献   

18.
In capillary electrochromatography (CEC), magnetic particles (MPs) were packed in a fused silica capillary by using the magnetic field to be retained without frits. For a chiral CEC separation, avidin was immobilized onto the surface of the MPs (AVI-MPs) as a stationary phase by using the physical adsorption technique. The injected AVI-MPs into the capillary were stably captured with the magnet (surface magnetic flux density, 250 mT) under the separation voltage of 10 kV (190 V/cm). By employing the fritless AVI-MPs packed capillary, the chiral separation of ketoprofen was successfully attained with the packing length of only 5 cm. Effects of the modification condition of avidin, pH of background solution, and the packing length on the enantioseparation were also investigated. Under the optimal condition, furthermore, the repeatability for the retention time of ketoprofen was better than 1.5% in the relative standard deviation and the capillary-to-capillary reproducibility was also acceptable in the prepared fritless capillaries.  相似文献   

19.
A novel fritting technology was introduced for the fused-silica capillary. The technique involved sintering of stainless steel (SS) particles at the tip of capillary through flame heating. A simple butane gas based welding torch was used for sintering the SS particles. The new fritting technique, flame induced sintering of SS particles (FIS/SSP), was applied for making frits with different inlet diameters (75 μm, 100 μm, 250 μm and 530 μm). The changes in morphologies of SS particles during sintering process were identified by scanning electron microscopy (SEM). Frits with the length of 0.5-1 mm and capillaries with inner diameter about 50-100 μm were fabricated through suitable selection of experimental conditions (size of SS particles and heating mode). The frits prepared by FIS/SSP technique exhibited adequate separation properties and mechanical strength. Columns packed with C18 particles were stable with these frits in a few important chromatographic operations. Frits prepared by FIS/SSP technique was used in three typical separation modes namely, capillary electrochromatography (CEC), p-assisted CEC (p-CEC) and low pressure liquid chromatography (LPLC). Importantly, no bubble formation was noticed with the frit over a period of one week. A good peak symmetry and high efficiency for separation were obtained using pressure-assisted CEC, p-CEC and low pressure-driven separation modes.  相似文献   

20.
Considering the current interest in capillary electrochromatography (CEC), performed in packed columns, we present the different methods used to pack capillary columns for use in CEC. General considerations on column packing are given and the column fabrication process is discussed in sufficient detail to allow instruction to those who are not experienced in the field. Five different packing methods are discussed to deliver packing material into the capillary column from a practical view point: slurry pressure packing, packing with supercritical CO2, electrokinetic packing, using centripetal forces, and packing by gravity. Entrapment of particulate material by sintering and sol-gel technology is also mentioned. Although slurry pressure packing procedures are most common, higher separation efficiencies are obtained using other packing approaches. Electrokinetic packing seems to be the simplest technique to deliver the packing material into the capillary columns. Nevertheless, as with the other packing techniques, skill and experience are required to complete all the steps involved in the fabrication of packed columns for CEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号