首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Black HT  Liu S  Ashby VS 《Organic letters》2011,13(24):6492-6495
Two fused thienoacene compounds with two-dimensional ring connectivity were synthesized, and their semiconducting properties were characterized. Both compounds have a crystal structure comprised of herringbone arrays of tight π-π stacks. Strong π-π interactions lead to self-assembly into well-defined crystalline thin films from the vapor phase for both compounds. Field effect transistors were fabricated, affording identical hole mobilities of 3.0 × 10(-3) cm(2)/(V s) and I(on/off) > 10(5).  相似文献   

3.
Chou TC  Lin KC  Kon-no M  Lee CC  Shinmyozu T 《Organic letters》2011,13(17):4588-4591
The development of an expedient synthesis toward quinoxaline ring-embedded polyacenoquinone esters with the generic structure A is demonstrated by the synthesis of penta- and hexacenoquinone esters. They are potential n-type small molecules, capable of undergoing successive reductions and self-assembling in face-to-face π-stacks.  相似文献   

4.
Hybrid oligothiophenes based on a various combinations of thiophene and 3,4-ethylenedioxythiophene (EDOT) groups have been synthesized. UV/Vis absorption spectra show that the number and relative positions of the EDOT groups considerably affect the width of the HOMO-LUMO gap and the rigidity of the conjugated system. Analysis of the crystallographic structure of two hybrid quaterthiophenes confirms that insertion of two adjacent EDOT units in the middle of the molecule leads to a self-rigidification of the conjugated systems by intramolecular SO interactions. Cyclic voltammetry data shows that the first oxidation potential of the oligomers decreases with increasing chain length and increasing number of EDOT groups for a given chain length. Electrochemical studies and theoretical calculations show that the positions of the EDOT units in the conjugated chain control the potential difference (DeltaE(p)) between the first and second oxidation steps. Moving the EDOT groups from the outer to the inner positions of the conjugated system increases DeltaE(p). Theoretical calculations confirm that this phenomenon reflects an increase of the intramolecular coulombic repulsion between positive charges in the dication. A thin-film field-effect transistor was fabricated by vacuum sublimation of a pentamer with alternating thiophene-EDOT structure, and the hole mobility was determined.  相似文献   

5.
Theoretical investigations of charge transport in organic materials are generally based on the "energy splitting in dimer" method and routinely assume that the transport parameters (site energies and transfer integrals) determined from monomer and dimer calculations can be reliably used to describe extended systems. Here, we demonstrate that this transferability can fail even in molecular crystals with weak van der Waals intermolecular interactions, due to the substantial (but often ignored) impact of polarization effects, particularly on the site energies. We show that the neglect of electronic polarization leads to qualitatively incorrect values and trends for the transfer integrals computed with the energy splitting method, even in simple prototypes such as ethylene or pentacene dimers. The polarization effect in these systems is largely electrostatic in nature and can change dramatically upon transition from a dimer to an extended system. For example, the difference in site energy for a prototypical "face-to-edge" one-dimensional stack of pentacene molecules is calculated to be 30% greater than that in the "face-to-edge" dimer, whereas the site energy difference in the pentacene crystal is vanishingly small. Importantly, when computed directly in the framework of localized monomer orbitals, the transfer integral values for dimer and extended systems are very similar.  相似文献   

6.
In this communication we report the electrical characteristics of hexathiapentacene (HTP) and emphasize the unusual chemical structure and molecular packing. We report field-effect mobilities as high as 0.04 cm2 V-1 s-1 and current on/off ratios of >105. With crystallographic evidence of unusually long S-S bonds compared to normal S-S bonds, we have suggested a unique resonance structure similar to trithiapentalene, which well explains the bonding characteristics of HTP. This work appears to be the first to determine its molecular structure/packing mode and to study its application in organic transistors.  相似文献   

7.
Zhang  Yu  Yang  Shuyuan  Zhu  Xiaoting  Zhai  Fei  Feng  Yiyu  Feng  Wei  Zhang  Xiaotao  Li  Rongjin  Hu  Wenping 《中国科学:化学(英文版)》2020,63(7):973-979
Doping is a critically important strategy to modulate the properties of organic semiconductors(OSCs) to improve their optoelectrical performances. Conventional bulk doping involves the incorporation of foreign molecular species(i.e., dopants) into the lattice of the host OSCs, and thus disrupts the packing of the host OSCs and induces structural defects, which tends to reduce the mobility and(or) the on/off ratio in organic field-effect transistors(OFETs). In this article, we report a highly efficient and highly controllable surface doping strategy utilizing 2D molecular crystals(2DMCs) as dopants to boost the mobility and to modulate the threshold voltage of OFETs. The amount of dopants, i.e., the thickness of the 2DMCs, is controlled at monolayer precision, enabling fine tuning of the electrical properties of the OSCs at unprecedented accuracy. As a result, a prominent increase of the average mobility from 1.31 to 4.71 cm~2 V~(-1) s~(-1) and a substantial reduction of the threshold voltage from -18.5 to -1.8 V are observed. Meanwhile, high on/off ratios of up to 10~8 are retained.  相似文献   

8.
A new magnetic oxide, CuMnVO4, was prepared, and its crystal structure was determined by single-crystal X-ray diffraction. The magnetic properties of CuMnVO4 were characterized by magnetic susceptibility and specific heat measurements, and the spin exchange interactions of CuMnVO4 were analyzed on the basis of spin-polarized electronic band structure calculations. CuMnVO4 contains MnO4 chains made up of edge-sharing MnO6 octahedra containing high-spin Mn2+ cations. Our work shows that CuMnVO4 undergoes a three-dimensional antiferromagnetic transition at approximately 20 K. Both the intrachain and interchain spin exchanges are antiferromagnetic, and the interchain spin exchange is not negligible compared to the intrachain spin exchange.  相似文献   

9.
Electronic polarization has an important impact on the site energies of charge carriers that play a key role in determining the charge transport in organic semiconductors.Dipolar molecules have strong intermolecular interactions and widespread applications in organic optoelectronics.Howeve r,compared with nonpolar organic semiconductors,electronic polarization for dipolar systems has been rarely studied.Here,taking 1,2,3,4-tetrafluoro-6,7-dimethylnaphthalene as representative,we have calculated the electronic polarization energies of dipolar organic molecular crystals by means of a polarizable forcefield method.Surprisingly,our results point to that the polarization energies for this dipolar system are similar to those of nonpolar systems.In addition,theπ-πstack contributes only about 30%~40%to the total polarization energy,thus the polarization effects along the three dimensions should be treated equally even for the one-dimensional stacking crystals.  相似文献   

10.
11.
The design, synthesis and properties of liquid-crystalline semiconducting oligothiophenes containing dithienothiophene (DTT), benzothiadiazole (BTZ) and carbazole (CBZ) rigid cores are described. The effect of molecular structure (shape, size and substitution) on their thermal behaviour and electrical properties has been investigated. Polarised optical microscopy (POM) and differential scanning calorimetry (DSC) analyses have revealed highly ordered smectic mesophases for most of the newly synthesised compounds. X-ray diffraction (XRD) studies performed at various temperatures have shown that the smectic order is retained in the crystalline state upon cooling across the transition temperature, affording cast films with a more favourable morphology for FET applications.  相似文献   

12.
The interface formation between three different perylene derivatives and Mg were investigated by high-resolution soft X-ray photoemission spectroscopy using synchrotron radiation at BESSY. The chemical and electronic properties of these interfaces were obtained after fitting the C1s, O1s, N1s and Mg2p core-level emission spectra as a function of Mg thickness. A strong chemical interaction between Mg and the molecular end groups is observed leading to the formation of new chemical components and/or charge redistribution due to the presence of the metal.  相似文献   

13.
The reaction of manganese(III) Schiff bases of the type salen(2-) (N,N'-ethylenebis(salicylideneaminato)) with X-substituted (X = CH(3), Cl) pyridinecarboxamide dicyanoferrite(III) [Fe(X-bpb)(CN)(2)](-) gave rise to a series of cyanide-bridged Mn(6)Fe(6) molecular wheels, [Mn(III)(salen)](6)[Fe(III)(bpmb)(CN)(2)](6) x 7H(2)O (1), [Mn(salen)](6)[Fe(bpClb)(CN)(2)](6) x 4H(2)O x 2CH(3)OH (2), [Mn(salen)](6)[Fe(bpdmb)(CN)(2)](6) x 10H(2)O x 5CH(3)OH (3), [Mn(5-Br(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 24H(2)O x 8CH(3)CN (4), and [Mn(5-Cl(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 25H(2)O x 5CH(3)CN (5). Compared with [Fe(bpb)(CN)(2)](-), which always gives rise to 1D or polynuclear species when reacting with Mn(III) Schiff bases, the introduction of substituents (X) to the bpb(2-) ligand has a driving force in formation of the novel wheel structure. Magnetic studies reveal that high-spin ground state S = 15 is present in the wheel compounds originated from the ferromagnetic Mn(III)-Fe(III) coupling. For the first time, the quantum Monte Carlo study has been used to modulate the magnetic susceptibility of the huge Mn(6)Fe(6) metallomacrocycles, showing that the magnetic coupling constants J range from 3.0 to 8.0 K on the basis of the spin Hamiltonian [Formula: see text]. Hysteresis loops for 1 have been observed below 0.8 K, indicative of a single-molecule magnet with a blocking temperature (TB) of 0.8 K. Molecular wheels 2-5 exhibit frequency dependence of alternating-current magnetic susceptibility under zero direct-current magnetic field, signifying the slow magnetization relaxation similar to that of 1. Significantly, an unprecedented archlike Mn(2)Fe(2) cluster, [Mn(5-Cl(salpn))](2)[Fe(bpmb)(CN)(2)](2) x 3H(2)O x CH(3)CN (6), has been isolated as an intermediate of the Mn(6)Fe(6) wheel 5. Ferromagnetic Mn(III)-Fe(III) coupling results in a high-spin S = 5 ground state. Combination of the high-spin state and a negative magnetic anisotropy (D) results in the observation of slow magnetization relaxation in 6.  相似文献   

14.
Ambipolar diphenylamino end-capped oligofluorenylthiophenes and fluoroarene-thiophene show great potential for application in organic light-emitting diodes (OLEDs). Here, we provide an in-depth investigation on the optical and electronic properties of OF(2)TP-NPh ( 1a), OF(2)DTP-NPh ( 2a), OF(2)TTP-NPh ( 3a), OF(2)QTP-NPh ( 4a), and 2,5-bis-(2,3,5,6-tetrafluoro-4-trifluoromethyl-phenyl)-2,2':5',2':5',2'-quaterthiophene ( 5a). The geometric and electronic structures of the oligomers in the ground-state are studied with density functional theory (DFT) and ab initio Hartree-Fock, whereas the lowest singlet excited states are optimized by ab initio CIS. The energies of the lowest singlet excited states are calculated by employing time-dependent density functional theory (TDDFT). The results show that the highest occupied molecular orbitals, lowest unoccupied molecular orbitals, energy gaps, ionization potentials, and electron affinities for the oligomers are affected by the thiophene chain length and the different end-caps. The absorption and emission spectra exhibit red shifts to some extent due to the increasing thiophene chain length and the enhancing electron-donating property of the end-caps. Furthermore, the large Stokes shifts ranging from 58 to 80 nm are examined, resulting from a more planar conformation of the excited-state between the two adjacent units in the oligomers. All the calculated data show that the fluoroarene-thiophene has improved electron transport rate and charge transfer balance performance, and all the studied molecules can be used as ambipolar-transporting materials in OLEDs.  相似文献   

15.
The crystalline photochromism of a diarylethene pyridyl ligand is applied to the modulation of the electronic environment of a high-spin Fe(II) metal ion.  相似文献   

16.
The results of theoretical analysis of the crystal structure and bonding in relation to thermal decomposition process in anhydrous mercury oxalate are presented. The methods used Bader’s Quantum Theory of Atoms in Molecules formalism with bond order model (by Cioslowski and Mixon), applied to electron density obtained from ab initio calculations carried out with FP-LAPW Wien2k package (Full Potential Linearized Augmented Plane Wave Method) and Brown’s Bond Valence Model are described. The analysis of the obtained results shows that most probably the thermal decomposition process of mercury oxalate should lead to metal and CO2 as products (as it is experimentally observed). Presented results (as well as the results of our similar calculations carried out previously for zinc, cadmium silver, cobalt and calcium oxalates) allow us to state that such methods (topological and structural), used simultaneously in analysis of the crystal structure and bonding properties, provide us with the additional insight into given compound’s behavior during thermal decomposition process. As a result, these methods can be considered as valuable supporting tool in the analysis of thermal decomposition process in given compound.  相似文献   

17.
18.
以NPB(N,N’-二苯基-N,N’-二(1-萘基)-1,1’-联苯-4,4’-二胺)为例,简要综述了本课题组近年来在发光有机半导体薄膜形态结构方面的研究进展.通过差热分析、偏光显微镜、透射电子显微镜、电子衍射、原子力显微镜表征,确认NPB是一类本征半晶性材料.一般的OLED器件采用的是非晶的NPB薄膜.基于等温结晶和表面诱导结晶实验确认,OLED器件可能存在两种热力学老化机制.对于采用非晶衬底的OLED器件,当NPB薄膜厚度小于临界厚度时器件可以稳定工作;对于采用多晶缓冲层衬底的OLED器件,由于表面诱导NPB结晶不存在临界厚度限制,器件容易结晶老化.  相似文献   

19.
We report a new p-type semiconducting polymer family based on the thieno[3,4-c]pyrrole-4,6-dione (TPD) building block, which exhibits good processability as well as good mobility and lifetime stability in thin-film transistors (TFTs). TPD homopolymer P1 was synthesized via Yamamoto coupling, whereas copolymers P2-P8 were synthesized via Stille coupling. All of these polymers were characterized by chemical analysis as well as thermal analysis, optical spectroscopy, and cyclic voltammetry. P2-P7 have lower-lying HOMOs than does P3HT by 0.24-0.57 eV, depending on the donor counits, and exhibit large oscillator strengths in the visible region with similar optical band gaps throughout the series (~1.80 eV). The electron-rich character of the dialkoxybithiophene counits in P8 greatly compresses the band gap, resulting in the lowest E(g)(opt) in the series (1.66 eV), but also raising the HOMO energy to -5.11 eV. Organic thin-film transistor (OTFT) electrical characterization indicates that device performance is very sensitive to the oligothiophene conjugation length, but also to the solubilizing side chain substituents (length, positional pattern). The corresponding thin-film microstructures and morphologies were investigated by XRD and AFM to correlate with the OTFT performance. By strategically varying the oligothiophene donor conjugation length and optimizing the solubilizing side chains, a maximum OTFT hole mobility of ~0.6 cm(2) V(-1) s(-1) is achieved for P4-based devices. OTFT environmental (storage) and operational (bias) stability in ambient was investigated, and enhanced performance is observed due to the low-lying HOMOs. These results indicate that the TPD is an excellent building block for constructing high-performance polymers for p-type transistor applications due to the excellent processability, substantial hole mobility, and good device stability.  相似文献   

20.
设计并合成了4个基于含硫芳杂稠环化合物的可溶性共轭齐聚物,即以3-十一烷基苯并[d,d’]噻吩并[3,2-b;4,5-b ’]并二噻吩(BTTT)为末端芳香单元,噻吩(T)、二噻吩(bT)、N-十二烷基-二噻吩并[3,2-b]吡咯(TP)或2,5-双(3-十二烷基噻吩)[3,2-b]并二噻吩 (qT)为中间芳香单元的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号