首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reduced two-bond Fermi-contact terms and the reduced spin-spin coupling constants (2h)K(X-Y) across X-H-Y hydrogen bonds for complexes stabilized by C-H-N, N-H-N, O-H-N, F-H-N, C-H-O, O-H-O, F-H-O and C-H-F hydrogen bonds are positive. The NMR Triplet Wavefunction Model (NMRTWM) indicates that the signs of the reduced FC terms and (2h)K(X-Y) are determined by excited triplet states that have an odd number of nodes intersecting the X-Y axis between X and Y, thereby leading to an antiparallel alignment of the nuclear magnetic moments of atoms X and Y.  相似文献   

2.
Hyperfine coupling constants (HFCC ) of the 19F and 35Cl atoms and the 19F and 35Cl radical anions have been calculated by the unrestricted Hartree–Fock (UHF ) method using polarization and diffuse functions with contracted double-zeta as well as uncontracted basis sets. The Adip values are fairly insensitive to changes in the basis set and show good accordance with experimental and other theoretical studies. The isotropic HFCCS aN of 19F, 19F, and 35Cl show strong dependence on d functions and the state of contraction of the s, p set. Spin-projected UHF wave functions lead to better agreement with experiment.  相似文献   

3.
Ab initio EOM-CCSD calculations have been performed on 3:1 FH:NH3 complexes at their own optimized MP2/6-31+G(d,p) geometries and at the optimized geometries in the hydrogen-bonding regions of corresponding 3:1 FH:collidine complexes. The isolated gas-phase equilibrium 3:1 FH:NH3 complex has an open structure with a proton-shared Fa-Ha-N hydrogen bond, while the isolated equilibrium 3:1 FH:collidine complex has a perpendicular structure with an Fa-Ha-N hydrogen bond that is on the ion-pair side of proton-shared. The Fa-N coupling constant ((2h)J(Fa-N)) for the equilibrium 3:1 FH:NH3 complex is large and negative, consistent with a proton-shared Fa-Ha-N hydrogen bond; (2h)JFb-Fa is positive, reflecting a short Fb-Fa distance and partial proton transfer from Fb to Fa across the Fb-Hb-Fa hydrogen bond. In contrast, (2h)JFa-N has a smaller absolute value and (2h)JFb-Fa is greater for the 3:1 FH:NH3 complex at the equilibrium 3:1 FH:collidine geometry, consistent with the structural characteristics of the Fa-Ha-N and Fb-Hb-Fa hydrogen bonds. Coupling constants computed at proton-transferred 3:1 FH:collidine perpendicular geometries are consistent with experimental coupling constants for the 3:1 FH:collidine complex in solution and indicate that the role of the solvent is to promote further proton transfer from Fa to N across the Fa-Ha-N hydrogen bond, and from Fb to Fa across the two equivalent Fb-Hb-Fa hydrogen bonds. The best correlations between experimental and computed coupling constants are found for complexes with perpendicular proton-transferred structures, one having the optimized geometry of a 3:1 FH:collidine complex at an Fa-Ha distance of 1.80 A, and the other at the optimized 3:1 FH:collidine geometry with distances derived from the experimental coupling constants. These calculations provide support for the proposed perpendicular structure of the 3:1 FH:collidine complex as the structure which exists in solution.  相似文献   

4.
Ab initio equation-of-motion coupled cluster singles and doubles calculations have been carried out on a variety of 2:1 FH:NH(3) complexes (F(b)H(b):F(a)H(a):NH(3)) to investigate the effects of structural changes on one- and two-bond spin-spin coupling constants across F(a)-H(a)-N and F(b)-H(b)-F(a) hydrogen bonds and to provide insight into experimentally measured coupling constants for 2:1 FH:collidine (2:1 FH:2,4,6-trimethylpyridine) complexes. Coupling constants have been computed for 2:1 FH:NH(3) equilibrium structures and proton-transferred perpendicular and open structures at 2:1 FH:NH(3), FH:pyridine, and FH:collidine geometries. (2h)J(Fa)(-)(N), (1)J(Fa)(-)(Ha), and (1h)J(Ha)(-)(N) exhibit expected dependencies on distances, angles, and the nature of the nitrogen base. In contrast, one- and two-bond coupling constants associated with the F(b)-H(b)-F(a) hydrogen bond, particularly (2h)J(F)()b(-)(F)()a, vary significantly depending on the F-F distance, the orientation of the hydrogen-bonded pair, and the nature of the complex (HF dimer versus the anion FHF(-)). The structure of the 2:1 FH:collidine complex proposed on the basis of experimentally measured coupling constants is supported by the computed coupling constants. This study of the structures of open proton-transferred 2:1 FH:NH(3), FH:pyridine, and FH:collidine complexes and the coupling constants computed for 2:1 FH:NH(3) complexes at these geometries provides insight into the role of the solvent in enhancing proton transfer across both N-H(a)-F(a) and F(b)-H(b)-F(a) hydrogen bonds.  相似文献   

5.
A systematic ab initio EOM-CCSD study of 15N-15N and 15N-1H spin-spin coupling constants has been carried out for a series of complexes formed from 11 nitrogen bases with experimentally measured proton affinities. When these complexes are arranged in order of increasing proton affinity of the proton-acceptor base and, for each proton acceptor, increasing order of proton affinity of the protonated N-H donor, trends in distances and signs of coupling constants are evident that are indicative of the nature of the hydrogen bond. All two-bond spin-spin coupling constants (2hJ(N-N)) are positive and decrease as the N-N distance increases. All one-bond N-H coupling constants (1J(N-H)) are negative (1K(N-H) are positive). 1J(N-H) is related to the N-H distance and the hybridization of the donor N atom. One-bond H...N coupling constants (1hJ(H-N)) are positive (1hK(H-N) are negative) for traditional hydrogen bonds, but 1hJ(H-N) becomes negative when the hydrogen bond acquires sufficient proton-shared character. The N-N and H...N distances at which 1hJ(H-N) changes sign are approximately 2.71 and 1.62 A, respectively. Predictions are made of the values of 2hJ(N-N) and 1J(N-H), and the signs of 1hJ(H-N), for those complexes that are too large for EOM-CCSD calculations.  相似文献   

6.
A systematic ab initio study has been carried out to determine the MP2/6-31+G(d,p) structures and EOM-CCSD coupling constants across N-H-F-H-N hydrogen bonds for a series of complexes F(H(3)NH)(2)(+), F(HNNH(2))(2)(+), F(H(2)CNH(2))(2)(+), F(HCNH)(2)(+), and F(FCNH)(2)(+). These complexes have hydrogen bonds with two equivalent N-H donors to F(-). As the basicity of the nitrogen donor decreases, the N-H distance increases and the N-H-F-H-N arrangement changes from linear to bent. As these changes occur and the hydrogen bonds between the ion pairs acquire increased proton-shared character, (2h)J(F)(-)(N) increases in absolute value and (1h)J(H)(-)(F) changes sign. F(H(3)NH)(2)(+) complexes were also optimized as a function of the N-H distance. As this distance increases and the N-H...F hydrogen bonds change from ion-pair to proton-shared to traditional F-H...N hydrogen bonds, (2h)J(F)(-)(N) initially increases and then decreases in absolute value, (1)J(N)(-)(H) decreases in absolute value, and (1h)J(H)(-)(F) changes sign. The signs and magnitudes of these coupling constants computed for F(H(3)NH)(2)(+) at short N-H distances are in agreement with the experimental signs and magnitudes determined for the F(collidineH)(2)(+) complex in solution. However, even when the N-H and F-H distances are taken from the optimized structure of F(collidineH)(2)(+), (2h)J(F)(-)(N) and (1h)J(H)(-)(F) are still too large relative to experiment. When the distances extracted from the experimental NMR data are used, there is excellent agreement between computed and experimental coupling constants. This suggests that the N-H-F hydrogen bonds in the isolated gas-phase F(collidineH)(2)(+) complex have too much proton-shared character relative to those that exist in solution.  相似文献   

7.
Ab initio calculations have been performed on a series of complexes in which (HCNH)(+) is the proton donor and CNH, NCH, FH, ClH, and FCl (molecules X and Z) are the proton acceptors in binary complexes X:HCNH(+) and HCNH(+):Z, and ternary complexes X:HCNH(+):Z. These complexes are stabilized by C-H(+)···A and N-H(+)···A hydrogen bonds, where A is the electron-pair donor atom of molecules X and Z. Binding energies of the ternary complexes are less than the sum of the binding energies of the corresponding binary complexes. In general, as the binding energy of the binary complex increases, the diminutive cooperative effect increases. The structures of these complexes, data from the AIM analyses, and coupling constants (1)J(N-H), (1h)J(H-A), and (2h)J(N-A) for the N-H(+)···A hydrogen bonds, and (1)J(C-H), (1h)J(H-A), and (2h)J(C-A) for the C-H(+)···A hydrogen bonds provide convincing evidence of diminutive cooperative effects in these ternary complexes. In particular, the symmetric N···H(+)···N hydrogen bond in HCNH(+):NCH looses proton-shared character in the ternary complexes X:HCNH(+):NCH, while the proton-shared character of the C···H(+)···C hydrogen bond in HNC:HCNH(+) decreases in the ternary complexes HNC:HCNH(+):Z and eventually becomes a traditional hydrogen bond as the strength of the HCNH(+)···Z interaction increases.  相似文献   

8.
Equation-of-motion coupled cluster singles and doubles (EOM-CCSD) calculations have been performed to evaluate three-bond (15)N-(31)P coupling constants ((3h)J(N[bond]P)) across N[bond]H....O[bond]P hydrogen bonds in model cationic and anionic complexes including NH(4)(+):OPH, NH(4)(+):OPH(3), NH(3):(-)O(2)PH(2), NFH(2):(-)O(2)PH(2), and NF(2)H:(-)O(2)PH(2). Three-bond coupling constants can be appreciable when the phosphorus is P(V), but are negligible with P(III). (3h)J(N[bond]P) values in complexes with cyclic or open structures are less than 1 Hz, a consequence of the nonlinear arrangement of N, H, O, and P atoms. For complexes with these structures, (3h)J(N[bond]P) may not be experimentally measurable. In contrast, complexes in which the N, H, O, and P atoms are collinear or nearly collinear have larger values of (3h)J(N[bond]P), even though the N[bond]P distances are longer than N[bond]P distances in cyclic and open structures. In linear complexes, (3h)J(N[bond]P) is dominated by the Fermi-contact term, which is distance dependent. Therefore, N[bond]P (and hydrogen-bonding N[bond]O) distances in these complexes can be determined from experimentally measured (15)N-(31)P coupling constants.  相似文献   

9.
Summary Using the quadratic response function at theab initio SCF level of approximation we have calculated the relativistic corrections from the spin-orbit Hamiltonian,H SO, to the indirect nuclear spin-spin coupling constants of XH4 (X = C, Si, Ge, and Sn). We find that the spin-orbit contributions toJ X-H are small, amounting only to about 1% forJ Sn-H. For the geminal H-H coupling constants the relativistic corrections are numerically smaller than forJ X-H, but in some cases relatively larger compared to the actual magnitude ofJ H-H. We also investigate the use of an effective one-electron spin-orbit Hamiltonian rather than the fullH SO in the calculation of these corrections.  相似文献   

10.
11.
王秉泽  邓从豪 《化学学报》1988,46(12):1155-1160
本文用RHF/STO-3G解析梯度方法研究了亚烷基卡宾XYC=C:(X, Y=Cl, H, Me和F)的重排反应, 给出了平衡态与过渡态构型. 对该组体系的计算发现: 基团的迁移活性顺序为Cl>H>Me>F; 迁移性小的基团增大迁移基团的迁移活性; 取代基不同一般比取代基相同的卡宾稳定性低; 基团的迁移活性顺序与电负性顺序不一致; 中心原子与C=C双键夹角小的基团优先迁移.  相似文献   

12.
The 1, 2-rearrangements of alkylidenecarbenes XYC=C: (X, Y=Cl, H, Me and F) have been studied by using RHF/STO-3G gradient method. For these systems at the STO-3G level, the shift reactivities are in the order of Cl>H>Me>F; the fixed groups with lower shift reactivities enhance the reactivities of the shift groups; the shift rule is that the group with a smaller angle formed by its center with C=C bond migrates prior to the others.  相似文献   

13.
CH_3NO(1)、CH_2FNO(2)、CHF_2NO(3)、CH_2ClNO(4)、CHCl_2NO(5)、CHCIFNO(6)、CF_3NO(7)和CCl_3NO(8)是一类重要的光化学分子,它们稳定性差、寿命短,实验研究其结构及稳定性较困难,仅CH_3NO、CF_3NO和CCl_3NO分子有理论研究,其余均未见报道,本文用ab initio方法在STO-3G水平上研究了上述分子结构稳定性,还用STO/  相似文献   

14.
Ab initio calculations at the equation-of-motion coupled cluster (EOM-CCSD) level of theory have been carried out to investigate one-bond (13)C-(1)H, (15)N-(1)H, (17)O-(1)H, and (19)F-(1)H coupling constants in a systematic study of monomers and hydrogen-bonded complexes. Computed coupling constants ((1)J(X-H)) for monomers are in good agreement with available experimental data. All reduced Fermi-contact terms and reduced coupling constants ((1)K(X-H)) for monomers and complexes are positive. Plots of (1)K(X-H) versus the X-H distance for the 16 monomers and the 64 complexes in which these monomers are proton donors exhibit significant scatter. However, a linear relationship has been demonstrated for the first time between coupling constants and X-H distances for different X atoms by plotting the ratios of the coupling constants for complexes and corresponding monomers versus the ratios of distances for complexes and corresponding monomers times the square of the Pauling electronegativity. Since the ratio removes the dependence of coupling constants on the magnetogyric ratios of X, this relationship holds for both (1)K(X-H) and (1)J(X-H). The decrease in reduced coupling constants ((1)K(X-H)) as the X-H distance increases is due primarily to the increased proton-shared character of the hydrogen bond.  相似文献   

15.
Singlet–triplet energy splitting for 24 silylenic reactive intermediates, X–CNSi (where X=H, F, Cl and Br), are compared and contrasted at 11 levels of theory: B1LYP/6-31++G**, B3LYP/6-31++G**, B1LYP/6-311++G**, B3LYP/6-311++G**, MP3/6-31G*, MP3/6-311++G**, MP2/6-31+G**, MP2/6-311++G**, MP4 (SDTQ)/6-311++G**, QCISD(T)/6-311++G** and CCSD(T)/6-311++G**. Each X-substituted silylenic species may either be singlet (s) or triplet (t), with one of the following three structures: 3-X-2-aza-1-silacyclopropenylidene (1s-X, 1t-X); [(X-imino)methylene]silylene (2s-X, 2t-X); and X-cyanosilylene (3s-X, 3t-X). For all X–CNSi species studied, orders of singlet–triplet energy separations (ΔEs-t,X), appear as a function of electro-negativity (F>Cl>Br>H). For the six H–CNSi isomers (X=H), stability order is: 3s-H>1s-H>2t-H>3t-H>2s-H>1t-H. Likewise, stability order for the six isomers with X=F, is: 3s-F>3t-F>1s-F>1t-F>2s-F>2t-F. For X=Cl, the order of stability is: 3s-Cl>1s-Cl>3t-Cl>2t-Cl>1t-Cl>2t-Cl. Finally, the order of stability for six isomers of Br–CNSi is: 3s-Br>3t-Br>1s-Br>2s-Br>2t-Br>1t-Br. The lowest energy minimum, among all 24 species scrutinized, appears to be the singlet acyclic 3s-X. Triplet silylene 2t-H is suggested to be more stable than its corresponding 2s-H at MP3, MP2 and DFT levels of theory. Comparisons between relative stabilities; multiplicities and geometrical parameters of 1–3 are discussed.  相似文献   

16.
The structure and properties (geometric, energetic, electronic, spectroscopic, and thermodynamic properties) of HArF‐HOX (X = F, Cl, Br) complex have been investigated at the MP2/aug‐cc‐pVTZ level. Three types of complexes are formed through a hydrogen bond or a halogen bond. The HArF‐HOX complex is the most stable, followed by the FArH‐OHX complex, and the HArF‐XOH complex is the most unstable. The binding distance in FArH‐OHX complex is very short (1.1–1.7 Å) and is smaller than that in HArF‐HOX complex. However, the interaction strength in the former is weaker than that in the latter. Thus, an unusual short hydrogen bond is present in FArH‐OHX complex. The associated H‐Ar bond exhibits a red shift, whereas the distant one gives a blue shift. A similar result is also found for the O? H and O? X bonds. The isotropic chemical shift is negative for the associated hydrogen atom but is positive for the associated halogen atom. However, a reverse result is found for the anisotropic chemical shift. The analyses of natural bond orbital and atoms in molecules have been performed for these complexes to understand the nature and properties of hydrogen and halogen bonds. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

17.
The magnetic shielding constants for 13C, 15N and 19F nuclei are calculated in the title compounds with several GIAO basis sets. Better overall agreement with experimental data is obstained with the 6-311G basis set.  相似文献   

18.
The equilibrium structures of FNO, ClNO, HONO, and FNO2 have been determined using three different, somewhat complementary methods: a completely experimental, a semi-experimental (where the equilibrium rotational constants are derived from the experimental effective ground-state rotational constants and an ab initio cubic force field), and an ab initio, where geometry optimizations are usually performed at the coupled cluster level of nonrelativistic electronic structure theory using small to very large Gaussian basis sets. For the sake of comparison, the equilibrium structures of HNO and N2O have also been redetermined, confirming and extending earlier results. The semi-experimental method gives structural parameters in good agreement with the reliable experimental results for each compound investigated. Because of inadequate treatment of electron correlation, the single-reference CCSD(T) method gives N-X (X[double bond]F, Cl, OH) bonds that are too strong and associate bond lengths that are significantly too short. The discrepancy increases with increase in the size of the basis set. A much more elaborate treatment of electron correlation at the CCSDTQ level solves this problem and results in increased bond lengths, correctly representing the weakness of the N-X bond in these XNO and XNO2 species. The equilibrium structures determined are accurate to better than 0.001 A and 0.1 degrees .  相似文献   

19.
A systematic ab initio investigation has been carried out to determine the structures, binding energies, and spin-spin coupling constants of ternary complexes X:CNH:Z and corresponding binary complexes X:CNH and CNH:Z, for X, Z = CNH, FH, ClH, FCl, and HLi. The enhanced binding energies of ternary complexes X:CNH:Z for fixed X as a function of Z decrease in the same order as the binding energies of the binary complexes CNH:Z. In contrast, the enhanced binding energies of the ternary complexes for fixed Z as a function of X do not decrease in the same order as the binding energies of the binary complexes X:CNH, a consequence of the increased stabilities of ternary complexes FCl:CNH:Z due to very strong chlorine-shared halogen bonds. For complexes in which the X···CNH interaction is a D-H···C hydrogen bond for D-H the proton-donor group (N-H, F-H, or Cl-H), spin-spin coupling constants (1)J(D-H) and (2h)J(D-C) in ternary complexes X:CNH:Z decrease in absolute value as the binding energies of binary complexes CNH:Z and the enhanced binding energies of the ternary complexes for fixed X as a function of Z also decrease. However, (2X)J(F-C) increases as the enhanced binding energies of the ternary complexes FCl:CNH:Z decrease, a consequence of the nature of the chlorine-shared halogen bond. The one-bond coupling constants (1)J(N-H) for the CNH···Z interaction in ternary complexes vary significantly, depending on the nature of the X···CNH interaction. The largest values of (1)J(N-H) are found for ternary complexes with FCl as X. Two-bond coupling constants (2h)J(N-A) for A the proton-acceptor atom of Z, and (2d)J(N-H) decrease in absolute value in the order of decreasing enhancement energies of ternary complexes X:CNH:Z for fixed Z as a function of X.  相似文献   

20.
ThefluorosulfonylisocyanateandchlorosulfonylisocyanatemoleculesarethemostreactivemoleculesforthetransferenceoftheNCOgroupandareveryimportantinsyntheticchemistry.Duetotheirversatilityinchemicalreactions,theyhavealsobecomethesubjectofmanystructuralstudi…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号