首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An experimental track layer tractor, based on an Allis Chalmers 8070 tractor (141 kW) was tested on bitumen covered concrete and on cultivated sandy loam at 7.8%; 13% and 21% soil water content. The two articulated beam-type tracks (500 mm wide × 2000 mm soil contact length) were constructed out of 500 mm long and 70 mm wide rubber covered steel track elements, carried by five steel cables (36 mm diameter). The tracks resisted inward deflection but allowed outward articulation between two smooth rear driving and two smooth front pneumatic truck tires (1060 mm diameter) per track. The contact pressure and the tangential force on an instrumented track element, as well as the total torque input to one track, were simultaneously recorded during the drawbar pull/slip tests.

Different possible pressure distribution profiles under the tracks were considered and compared to the recorded data. Two possible traction models are proposed, one constant pressure model for minimal inward track deflection, and a deformable track model with inward deflection and a higher contact pressure at both the front free-wheeling and rear driving tires. For both models, the traction force was generated mainly by rubber/soil friction and adhesion and limited soil shear. A close agreement between the measured and predicted contact pressures and traction force for individual track elements, based on the deformable track model, was observed. The recorded and calculated coefficient of traction based on the summation of the force for the series of track elements were comparable, but were considerably lower than the predicted values, probably due to internal track friction rather than soil sinkage. The tractive efficiency for both a hard or soft surface was also unacceptably low, probably caused by internal track friction.  相似文献   


2.
This paper discusses experimental results from a multiple cavity test rig representative of a high pressure compressor internal air system. Measurements of the axial, tangential and radial velocity components are presented. These were made using a two component, laser doppler anemometry (LDA) system for a range of non-dimensional parameters representative of engine conditions (Re up to 4 × 106 and Rez up to 1.8 × 105). Tests were carried out for two different sizes of annular gap between the (non-rotating) drive shaft and the disc bores.

The axial and radial velocities inside the cavities are virtually zero. The size of the annular gap between disc bore and shaft has a significant effect on the radial distribution of tangential velocity. For the narrow annular gap (dh/b = 0.092), there is an increase of non-dimensional tangential velocity V/Ωr with radial location from V/Ωr < 1 at the lower radii to solid body rotation V/Ωr = 1 further into the cavity. For the wider annular gap (dh/b = 0.164), there is a decrease from V/Ωr > 1 at the lower radii to solid body rotation further into the cavity. An analysis of the frequency spectrum obtained from the tangential velocity measurements is consistent with a flow structure in the r plane consisting of pairs of contra rotating vortices.  相似文献   


3.
Mathematical models to predict the mode and extent of deformation occurring below sinkage plates are presented in the first part of this paper which encompasses the theoretical approach to the subject. These models are based on previous work by Earl (Earl R. Assessment of the behaviour of field soils during compression. Journal of Agricultural Engineering Research 1997;68:147–57)who developed a procedure to predict the likely mode of deformation using confined compression tests carried out alongside plate sinkage tests. This work suggested that soil behaviour, during increasing compression under a sinkage plate, is governed by three processes; (i) compaction below the plate with constant lateral stress, (ii) compaction with increasing lateral stress, and (iii) displacement and compaction of soil laterally. The aim of this second part to the paper is to observe soil deformation processes occurring below a circular sinkage plate to examine (i) whether the three phases of deformation referred to above occur in practice, and (ii) the accuracy of the models for predicting the soil deformation processes that occur. Tests were carried out on sandy loam soil under controlled conditions in a soil bin. Observations of deformation processes, recorded using long-exposure photography, revealed that during the initial stages of sinkage (a few millimetres), the corresponding disturbance of soil below the plate extended disproportionately further and was cylindrical in form. As sinkage progressed, the deformation process went through a transitional stage before reaching the more widely recognised form of the development of an inverted cone of compacted soil directly below the plate which moved with the plate causing lateral soil movement and compaction. Predictions for a medium density sandy loam were found to be in broad agreement with soil behaviour under a semi-circular sinkage plate observed behind a sheet of tempered glass under controlled conditions in a soil tank.  相似文献   

4.
Three dimensional numerical studies were performed for laminar heat transfer and fluid flow characteristics of wavy fin heat exchangers with elliptic/circular tubes by body-fitted coordinates system. The simulation results of circular tube were compared with the experiment data, then circular and elliptic (e = b/a = 0.6) arrangements with the same minimum flow cross-sectional area were compared. A max relative heat transfer gain of up to 30% is observed in the elliptic arrangement, and corresponding friction factor only increased by about 10%. The effects of five factors on wavy fin and elliptic tube heat exchangers were examined: Reynolds number (based on the smaller ellipse axis, 500  4000), eccentricity (b/a, 0.6  1.0), fin pitch (Fp/2b, 0.05  0.4), fin thickness (Ft/2b, 0.006  0.04) and tube spanwise pitch (S1/2b, 1.0  2.0). The results show that with the increasing of Reynolds number and fin thickness, decreasing of the eccentricity and spanwise tube pitch, the heat transfer of the finned tube bank are enhanced with some penalty in pressure drop. There is an optimum fin pitch (Fp/2b = 0.1) for heat transfer, but friction factor always decreases with increase of fin pitch. And when Fp/2b is larger than 0.25, it has little effects on heat transfer and pressure drop. The results were also analyzed from the view point of field synergy principle. It was found that the effects of the five factors on the heat transfer performance can be well described by the field synergy principle.  相似文献   

5.
Previous studies at Yakima Training Center (YTC), in Washington State, suggest freeze-thaw (FT) cycles can ameliorate soil compacted by tracked military vehicles [J. Terramechanics 38 (2001) 133]. However, we know little about the short-term effects of soil freezing over a single winter. We measured bulk density (BD), soil penetration resistance (SPR), and steady-state runoff rates in soil newly tracked by an Abrams tank and in uncompacted soil, before and after a single winter at YTC. We similarly measured BD, SPR and saturated hydraulic conductivity (kfs) in simulated tank tracks at another site near Lind Washington. Average BD was significantly greater in tank ruts at YTC and in simulated tracks at the Lind site than in uncompacted soil soon after tracking and did not change significantly during the winter of 1997–1998. Measurements of SPR were strongly influenced by soil moisture. When soil was moist or tracks were newly formed, SPR was significantly higher in tank ruts than in uncompacted soil from the surface to a depth of about 10–15 cm. The greatest average SPR in compacted soil was observed between 4 and 6 cm depth. We observed less difference in SPR between tank ruts and uncompacted soil near-surface at YTC as the time after trafficking increased. We observed highest SPR ratios (compacted rut:undisturbed) in fresh tracks near the surface, with lower ratios associated with increasing track age or soil depth, indicating that some recovery had occurred at YTC near-surface. However, we did not observe a similar over-winter change in SPR profiles at the Lind site. Rainfall simulator data from YTC showed higher steady-state runoff rates in tank ruts than over uncompacted soil both before and after winter. However, more time was required to reach steady-state flow in tank ruts and the proportion of runoff was slightly lower in May 1998 than in August 1997. At the Lind site, kfs was lower in newly compacted soil than in one-year old compacted soil or uncompacted soil. Our data suggest that indices of water infiltration such as steady-state runoff rates or kfs, are more sensitive indicators of soil recovery after compaction than are BD or SPR.  相似文献   

6.
A fully instrumented device capable of measuring soil sinkage and shear parameters developed at the Agricultural Engineering Department, University of California, Davis was employed to conduct in situ sinkage and shear tests in a tilled and a farm, dry, Yolo loam soil. Similar tests were also conducted in a tilled, moist Yolo loam soil. An 18.4R38 tire was tested at different levels of inflation pressure and axle loads in these soil conditions. Soil parameters obtained using the instrumented device were related to the traction prediction equation parameters using traction mechanics, principle of conservation of energy and dimensional analysis.  相似文献   

7.
An instrumented portable device that measures soil sinkage, shear, and frictional parameters in situ was developed to investigate the complexity of soil-traction device interaction process. The device was tested to determine its ability to measure soil frictional and shear characteristics. Extensive laboratory tests were conducted using dry and moist Capay clay and Yolo loam soils. In addition, field tests were also conducted in a Yolo loam field located at the UC Davis Agricultural Experiment Station. The Cohron sheargraph was also tested under the same laboratory experimental conditions to determine adhesion, soil-metal friction, cohesion, and angle of internal friction of soil. The analysis of experimental data indicated that soil adhesion and soil-metal friction were found to be functions of the intercept and slope values of cone torque versus cone index plot (r2 = 0.94 and 0.95, respectively). Moreover, soil cohesion was found to be related to adhesion by the constrained adhesion relationship, and soil angle of internal friction was proportional to soil-metal friction as reported by Hettiaratchi [7] and [8]. These results imply that a simpler device consisting of a rotating cone can be developed to measure soil frictional and shear characteristics. Preliminary results showed that the soil parameters determined using this device predicted the maximum net traction developed by four different radial ply tires tested by Upadhyaya et al. [18] under similar soil conditions quite well. These results indicate that the parameters obtained from the device could be useful in obtaining traction related parameters of a soil-tractive device interaction process.  相似文献   

8.
Soil aggregate stability as a key indicator of soil structure, is a product of interactions between soil environment, management practices, and land use patterns. The objective of this study was to analyze the impact of various land use patterns on soil aggregate stability in Sichuan Basin of southwestern China. The dry- and water-stable aggregate size distributions were determined by manual dry sieving procedure and Yoder's wet sieving procedure, respectively, while microaggregates and its mechanical and chemical stabilities by Kachisky's method, oscillator method, and citrate-dithionate (C-D) reagent method, separately. The results indicated that fractal dimension and surface fractal dimension were useful indicators to reflect soil aggregate distribution. Land use patterns have an obvious influence on soil aggregate stability. In the study area, water stability, mechanical stability, and chemical stability followed the sequence, Barren land 〉 forestland 〉 orchard 〉 cropland, and the original stability and collapse velocity were sensitive to soil properties and soil structure. The difference of aggregate stability under different land use patterns is mainly due to the intensity of human disturbance and cultivation. Improper land use patterns will lead to breakdown of unstable aggregates, producing finer and more-easily transportable particles and microaggregates. In the future, inappropriate cultivation and land use patterns should be changed to protect soil structure, to improve soil aggregate stability and soil fertility in Sichuan Basin.  相似文献   

9.
Surface design modifications have recently exhibited a means of reducing soil-tool adhesion. The tribological characteristics of soil-burrowing animals were employed on tillage machinery to study the effect on adhesion. Considering the characteristics of dung beetles, ultra high molecular weight polyethylene (UHMW-PE) protuberances were mounted as embossed arrays on a mouldboard plough. To investigate a suitable geometry of such protuberances, five shapes were studied (flat, semi-spherical, semi-oblate, semi short-prolate and semi long-prolate) using a combination of base diameters and protrusion heights. The dimensionless height to diameter ratio (HDR) was used to characterize the geometry. Experiments were conducted to evaluate the resultant influence of various geometrical shapes and sizes of the protuberances (base diameter: 20–50 mm; protrusion height: 0–50 mm) on lowering the ploughing resistance of the mouldboard plough in Bangkok clay soil. A comparison was made between the modified and the conventional plough in dry (21.8% (d.b.)), sticky (37.2% (d.b.)), wet (49.1% (d.b.)) and flooded (64.3% (d.b.)) Bangkok clay soil at 1, 3 and 5 km/h forward speeds. Percent reduction in ploughing resistance of bionic mouldboard plough in these soil conditions with HDR = 0 was 1–6% in dry soil, 16–22% in sticky soil, 14–20% in wet soil and 8–12% in flooded soil. With HDR = 0.25 the ploughing resistance was reduced by 2–7% in dry soil, 18–36% in sticky soil, 17–33% in wet soil and 15–28% in flooded soil. Similarly with HDR = 0.5, it reduced by 10–16% in sticky soil, 6–17% in wet soil and 12–26% in flooded soil. Whereas, HDR > 0.5 increased the ploughing resistance by 7–29%.  相似文献   

10.
Studies were conducted for the establishment of safe axle loads for sugarcane hauling vehicles beyond which detrimental soil compaction would be induced. The treatments involved running a loaded test vehicle in field strips previously chosen at random. Safe loads were established by testing the level of significance of the difference in induced soil compaction between treated and non-treated sections. Working under soil moisture contents of 21.4–27.1% (dry basis), safe axle loads for two 18.4 × 30 tires were found to be 55.6 and 60.0 kN for sandy clay loam and sandy loam soils with initial dry bulk density about 1.434 g/cm3. These corresponded to ground contact pressures of 111 and 120 kPa, respectively.  相似文献   

11.
The development of streamwise orientated disturbances through the boundary layer thickness prior to transition onset for zero-pressure gradient boundary layer flow under the influence %Tu = 4.2 is presented. The analysis concentrates on the development of the maximum positive and negative of the fluctuation velocity in order to gain further insight into the transition process. The average location of the peak negative fluctuation velocity over a range of Reynolds numbers was measured in the upper portion of the boundary layer at y/δ ≈ 0.6, whereas the location of the peak positive value was measured at y/δ ≈ 0.3. The disturbance magnitude of the negative fluctuation velocity increased beyond that of the positive as transition onset approached. The distribution and disturbance magnitude of the maximum positive and negative fluctuation velocities indicate that the initiation of transition may occur on the low-speed components of the flow that are lifted up to the upper region of the boundary layer. This is in qualitative agreement with recent direct numerical simulations on the breakdown of the flow on the lifted low-speed streaks near the boundary layer edge. The results presented in this investigation also demonstrate the increased physical insight gained by examining the distributions of the maximum positive and negative of the streamwise fluctuation velocity component associated with the low- and high-speed streaks, compared to time-averaged values, in determining what structures cause the breakdown to turbulence.  相似文献   

12.
Soil aggregate stability as a key indicator of soil structure, is a product of interactions between soil environment, management practices, and land use patterns. The objective of this study was to analyze the impact of various land use patterns on soil aggregate stability in Sichuan Basin of southwestern China. The dry- and water-stable aggregate size distributions were determined by manual dry sieving procedure and Yoder's wet sieving procedure, respectively, while microaggregates and its mechanical and chemical stabilities by Kachisky's method, oscillator method, and citrate-dithionate (C-D) reagent method, separately. The results indicated that fractal dimension and surface fractal dimension were useful indicators to reflect soil aggregate distribution. Land use patterns have an obvious influence on soil aggregate stability. In the study area, water stability, mechanical stability, and chemical stability followed the sequence, Barren landforestlandorchardcropland, and the original stability and collapse velocity were sensitive to soil properties and soil structure. The difference of aggregate stability under different land use patterns is mainly due to the intensity of human disturbance and cultivation. Improper land use patterns will lead to breakdown of unstable aggregates, producing finer and more-easily transportable particles and microaggregates. In the future, inappropriate cultivation and land use patterns should be changed to protect soil structure, to improve soil aggregate stability and soil fertility in Sichuan Basin.  相似文献   

13.
For periodic arrays of spheres the permeability is obtained numerically as a function of the dimensionless wave number kD in the flow direction, where D is the sphere diameter, k = 2π/λ is the wave number, and λ is the distance between the spheres in the flow direction. Our numerical results for the solids fraction of 0.45 show that for kD < 6.5 the permeability increases with increasing kD. But, it decreases for 6.5 < kD < 8.5 and reaches a local minimum at kD  8.5, and then increases again with increasing kD. Since the Fourier spectrum of the area fraction is zero for kD = 8.98, this result suggests that the area fraction plays an important role in determining the dependence of permeability on the distance between the spheres in the flow direction. For smaller solids fractions, the positions of the local maximum and minimum of permeability shift to slightly smaller kD’s.  相似文献   

14.
Suitability of using rubber tracks as traction device in power tillers replacing pneumatic tires was studied using an experimental setup consisting of a track test rig for mounting a 0.80 m × 0.1 m rubber track and a loading device for applying different drawbar pulls. Tests were conducted in the soil bin filled with lateritic sandy clay loam soil at an average soil water content of 9% dry basis by varying the cone index from 300 to 1000 kPa. Data on torque, pull and Travel Reduction Ratio (TRR) were acquired using sensors and data acquisition system for evaluating its performance. Maximum tractive efficiency of the track was found to be in the range of 77–83% corresponding to a TRR of 0.12–0.045. The Net Traction Ratio (NTR) at maximum tractive efficiency was found to be between 0.49 and 0.36.Using non-linear regression technique, a model for Gross Traction Ratio (GTR) was developed and it could predict the actual values with a maximum variation of 6% as compared to an average variation of 50% with Grisso’s model. Based on this model, tractive efficiency design curves were plotted to achieve optimum tractive performance of track for any given soil condition.  相似文献   

15.
The two dimensional impinging circular twin-jet flow with no-cross flow is studied numerically and experimentally. The theoretical predications are carried out through numerical procedure based on finite volume method to solve the governing mass, momentum, turbulent kinetic energy and turbulent kinetic energy dissipation rate. The parameters studied were jet Reynolds number (9.5 × 104  Re  22.4 × 104), nozzle to plate spacing (3  h/d  12), nozzle to nozzle centerline spacing (l/d = 3, 5 and 8) and jet angle (0°  θ  20°). It is concluded that the stagnation primary point moves away in the radial main flow direction by increasing the jet angle. This shift becomes stronger by increasing the nozzle to nozzle centerline spacing (l/d). A secondary stagnation point is set up between two jets. The value of pressure at this point decreases by decreasing Reynolds number and/or increasing the jet angle.

The sub atmospheric region occurs on the impingement plate. It increases strongly by increasing Reynolds number and decreases as the jet angle and/or a nozzle to plate spacing increases. The spreading of jet decreases by increasing nozzle to plate spacing. The intensity of re-circulation zone between two jets decreases by increasing of h/d and jet angle. The increase of turbulence kinetic energy occurs within high gradient velocity.  相似文献   


16.
We study the dynamics of a massless particle in an annular configuration of N bodies, N − 1 of which have equal masses m and are located in equal distances on a fictitious circle and one has mass βm and is located at the center of the circle. Our interest is focused on the bifurcation points from planar to three-dimensional families of symmetric periodic orbits in the above problem. We study numerically the evolution of these bifurcation points with respect to the variation of the mass parameter β. In particular we investigate the continuous evolution of bifurcation points for values of β from 2 up to 1000. The two distinct cases of the system’s behavior at β = 2 and 1000 are examined comparatively and various conclusions are drawn regarding the overall dynamical evolution of the three-dimensional system as the relative mass of the central body grows.  相似文献   

17.
Soil surface forces resulting from traffic tracked vehicles can cause environmental damage by decreasing plant development and increasing erosion. This paper investigates the soil surface disturbance from tracked vehicle operation. Sharp turns (lower turning radius) from M113 operation produce increased disturbed widths and more severe vegetation damage. The pad-load ratio for the M113 track shoe was determined at various loads. The soil rut produced from tracked vehicle operation was determined at various driving models (straight, smooth turn, sharp turn). The width and depth of track rut and height of soil piled increased when the tracked vehicle negotiated a sharp turn. The results of this study indicate for the soil conditions tested, the width of disturbance is dependent on the operating characteristics of the vehicle. A vehicle conducting sharp turns will disturb a larger width of soil than a vehicle travelling straight or conducting smooth turns.  相似文献   

18.
Knowledge of scale dependent variation of soil properties is important where upscaling and generalization from plot scale studies to field and larger scale is desired. We used conventional statistics, geostatistics, and fractal analysis to characterize and compare the apparent soil electrical conductivity (ECa) of six contiguous agricultural fields each ranging between 9.5 and 14.0 ha in size. Factor analysis revealed that ECa was strongly related to ammonium extractable K, organic matter (OM), pH and Bray-2 Phosphorus, but not to ammonium extractable Ca and sum of bases. All six fields were spatially structured and well described by exponential semivariograms. Fractal dimensions estimated from the linear portion of the semivariogram using a linear plateau model were statistically different (p = 0.05) among some of the fields, and the differences may have been caused by management differences. Fractal analysis identified at least two scales of variation for the fields. The first scale of variation, common to all six fields, was for distances less than 9 m. The second scale of variation was for distances ranging between 9 and 46 m (field NC), 9 and 79 m (fields SC and SW); and 9 and 126 m (field SE). Two of the fields (fields NW and NE) did not have a plateau on the log–log plot of the semivariograms, indicating a scaling behavior at larger distances. The study showed that although the semivariogram forms are similar among the six fields, the rate of change of the semivariograms (as indicated by the fractal dimension) differs for some of the fields at distances greater than 9 m.  相似文献   

19.
A force platform, which can provide three dimensional forces and moments on its top surface, was used to study force transmitted by human gait below the soil surface in order to understand detonation of antipersonnel landmines. Soils of varying depth were packed on the top surface of the platform to measure the forces transferred from the soil surface. Experimental variables included subjects (people), soil depth, soil type, moisture content, and compaction level. Soils used in this study were sand and sandy loam. There were medium and high two compaction levels for each soil. Sandy loam soil included two moisture contents; sand tested involved two moisture contents and dry sand. Soil depth varies from 0 (bare platform) to 200 mm. Five subjects with different weights were selected and used in this study.The subsoil force and its duration were measured for different subjects at a depth up to 200 mm. The impulse in subsoil was then calculated and used in evaluating the effect of different subjects on the force transfer in soil. The results indicated that loose soil can transfer larger force to subsoil than dense soil; test results showed that heavier subjects also created larger subsoil forces than lighter ones. Whether the effect of soil depth on subsoil impulse was significant was depended on the soil conditions. For the sand with 5.5% moisture content and bulk density of 1800 kg/m3, soil depth significantly affected subsoil impulses. For the sandy loam soil, the mass of subject increased from 50 to 100 kg resulted in 100% increase in subsoil impulses at all four depths; for the sand, the mass of subject increased from 55 to 100 kg approximately. This resulted in 80% increase in subsoil impulses under all four depths regardless of moisture content and bulk density. The results of this study will helpful for designing new equipment and evaluating existing machines for neutralizing landmines.  相似文献   

20.
The thermal behavior of an integrated collector storage solar water heater (ICSSWH) is numerically studied using CFD simulations. Based on the good agreement between the numerical results and the experimental data from literature, we propose a geometrical change allowing limiting the main disadvantage of this solar system which is its high night losses due to the non-insulated storage tank surface. A second 3D CFD model of an ICSSWH in which the storage tank is partially insulated is developed and three values of this tank thermal insulated fraction are studied. Numerical results show that the partially insulated tank based ICSSWH presents lower thermal losses during the night and this night thermal losses coefficient is reduced from 14.6 to 11.64 W K?1 for the tank thermal insulation fraction τ = 1/4. Similarly, the modified system presents the advantage of its lower thermal losses even during the day. Regarding the thermal production, it is seen that the modified system presents higher water temperature at night and that for all the tank thermal insulation fractions. Concerning the operation of this modified system during the day, the water temperature is lower during the day and that up to 16 h but the water temperature which achieves 324 K for the storage tank thermal insulation fraction τ = 1/8 still sufficiently high to satisfy a family hot water needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号