首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
陈冰昆  钟海政  邹炳锁 《化学进展》2011,23(11):2276-2286
半导体纳米晶是近年来发展起来的一类新型功能材料,因其独特的量子限域效应和光电性质,在太阳电池、发光二极管、光电探测器、生物标记、非线性光学等领域中具有潜在的应用。与目前研究比较多的Ⅱ-Ⅵ和Ⅳ-Ⅵ族纳米晶相比,Ⅰ-Ⅲ-Ⅵ族半导体纳米晶,不含镉和铅等重金属元素,具有毒性小、带隙窄、光吸收系数大、Stokes位移大、自吸收小以及发光波长在近红外区等特点,有望成为新一代低成本太阳电池和低毒荧光量子点生物标记材料, 还可用于发光二极管和光电探测等领域。因此,Ⅰ-Ⅲ-Ⅵ族半导体纳米晶的合成、性质及应用研究成为近期纳米晶研究领域的热点之一。本文将综述Ⅰ-Ⅲ-Ⅵ族半导体纳米晶的研究进展,着重介绍其制备方法、光学性质及其在生物标记、太阳电池等领域的应用。  相似文献   

2.
合成半导体胶体纳米晶的新方法   总被引:1,自引:0,他引:1  
半导体纳米晶由于其独特的光学和电学性质在光学器件、医疗诊断、激光等方面有了越来越重要的应用.本文介绍了胶体半导体纳米晶合成技术的一些最新进展。  相似文献   

3.
由于小尺寸效应,纳米晶具有独特的电、磁、光学和结构性质,因而在材料领域具有广阔的应用前景,例如,利用磁性金属和半导体纳米晶对尺寸敏感的特性进行超高密度信息磁存储及微电子技术的应用研究.但表面原子的巨大剩余成键能力使其倾向于相互团聚并长大,只有实现纳  相似文献   

4.
李涛  陈德良 《化学进展》2011,23(12):2498-2509
金属氧化物、Ⅲ-Ⅴ、Ⅱ-Ⅵ等半导体纳米材料由于其独特的功能性质已广泛应用于光学、电子、太阳能转化、催化等领域,是当今先进材料领域的研究前沿与热点。随着科技的发展,人们对材料的高效、多功能要求已成为必然,对半导体材料发展要求亦如此。多组分复合、多层次结构协同是实现半导体纳米材料多功能化与高效化的有效途径。构筑多级结构组合纳米半导体,不但可以调控其能带结构而提高半导体材料的光电与催化性能,而且由于多级低维纳米结构聚集时形成的空间位阻效应可以有效克服纳米晶“易团聚”难题。本文提出多级结构组合纳米晶的概念、分类,结合近年来该领域的研究实践,较系统地综述了多级复合半导体纳米结构制备的最新研究进展。首先简要介绍了多级复合半导体纳米材料的概念与典型结构; 其次对典型多级复合半导体纳米材料的制备方法进行了重点评述,分别综述了液相法、气相法以及最新发展起来的静电纺丝等方法在多级结构半导体复合纳米材料制备中的应用实践。再其次,对以具有半导体特性的石墨烯及其功能化衍生物为基体的新型多级复合半导体纳米材料的制备做了综述。最后对半导体/半导体多级结构复合纳米材料的发展方向做了展望。  相似文献   

5.
制备了单分散性良好且尺寸可调的具有荧光性质的CuFeS2纳米晶,利用紫外-可见吸收光谱(UVVis)、荧光光谱、透射电子显微镜(TEM)、X射线粉末衍射(XRD)、元素分析和光电流测试等技术对其组分和结构进行了表征,分析了CuFeS2纳米晶尺寸变化对吸收光谱和光电响应行为的影响规律.随着CuFeS2纳米晶尺寸增大,其吸收峰位表现出符合量子尺寸效应的相应红移;具有荧光性质的CuFeS2纳米晶可控制备预示其在生物医学成像和光电器件等领域具有应用前景.  相似文献   

6.
熊麟  凡勇  张凡 《化学学报》2019,77(12):1239-1249
稀土纳米晶具有丰富的激发和发射波长,良好的化学和光稳定性、大Stokes位移等特点.近年来,稀土纳米晶在生物活体成像与传感领域的应用研究取得了迅速进展.通过纳米尺度的材料设计与合成,可以对稀土纳米晶的荧光效率、波长、寿命等光学性质,以及生物相容性、靶向性、响应性等生化性质进行精细调控,使其更好地适应于活体深组织的成像与分析.先概述活体荧光成像的技术特点与要求,然后介绍稀土纳米晶的一般组成、光学性质和荧光机理,随后详细讨论对稀土纳米晶光学和生化性质进行调控的方法,着重展示这些材料的设计和修饰在生物成像与传感领域的一些最新应用.通过总结最近的研究成果,期望能够为下一步的研究提供一些参考思路,以推进基于稀土纳米晶的生物成像与传感技术的临床转化和应用.  相似文献   

7.
贵金属纳米材料在纳米尺度具有独特的光学、 电学性质及优异的催化性能, 是一类重要的功能纳米材料. 基于贵金属材料的纳米酶研究是贵金属纳米材料在生物医学领域的一个前沿研究方向. 贵金属基纳米酶具有特殊的光学性质、 较好的化学稳定性、 可调控的类酶活性及良好的生物相容性, 是目前纳米生物医学领域的热点研究材料. 本文总结了贵金属基纳米酶的活性种类、 活性机理、 活性调控以及在生物医学等领域的潜在应用.  相似文献   

8.
手性无机纳米结构不仅形貌和结构可调控、 易于表面功能化修饰, 而且光学性质独特, 在生物领域的应用上展现了很大的优异性. 本文综述了近年来手性纳米技术在生物医学领域的研究进展, 重点介绍了手性金属和手性半导体纳米结构的合成策略、 圆二色效应、 光手性机制及在生物成像、 生物传感、 肿瘤以及神经退行性疾病等医学领域的应用. 手性纳米材料的研究丰富了生物化学的纳米技术手段, 促进了肿瘤等重大疾病诊断与治疗技术的进步, 推动了手性在生命科学中的发展, 鼓励了研究者对这一新兴领域的持续探索与挑战.  相似文献   

9.
基于自身的量子限域效应、尺寸效应、介电限域效应、宏观量子隧道效应和表面效应,碲化镉(CdTe)纳米晶独特的性质在非线性光学、磁介质、催化、医药及功能材料等方面得到了广泛的应用,并且展现出极为广阔的应用前景,同时对生命科学和信息技术的持续发展以及物质领域的基础研究也产生了深刻的影响。本文以 CdTe 纳米晶为对象,详细介绍了其5种典型的制备方法和应用的最新进展。在制备方面,5种典型的制备方法各有利弊,如何在温和的条件下制备出形貌和尺寸可控的 CdTe 纳米晶仍是一个值得追求的目标。通过自组装技术可以制备形貌独特,性能优异的 CdTe 纳米材料,进而实现 CdTe 半导体纳米器件的研制,具有重要的科学意义,是今后研究的热门方向。在应用方面,CdTe纳米晶不但实现了其在光电器件、生物学等领域的应用,而且将会在这些领域继续深化和延伸,开发出新的应用领域。本文同时对 CdTe 纳米晶的发展趋势也进行了展望。  相似文献   

10.
全无机钙钛矿CsPbX3(X = Cl, Br, I) 纳米晶作为一类新型的低成本直接带隙半导体材料,具有优异的光学性质,如吸收系数高、尺寸和发射波长易调节、半峰宽窄、荧光量子产率高等特性,在照明、能源、信息显示和探测等领域表现出巨大的应用潜力,成为材料领域的研究热点。本文从CsPbX3纳米晶的结构组成入手,重点综述了其常见的制备方法如高温热注入法、室温再沉淀法、溶剂热法、液滴微流控法、阴离子交换法等,对常见的形貌尺寸控制策略如反应温度和表面配体进行归纳,以及改善CsPbX3纳米晶稳定性的策略,总结了此类材料在白色发光二极管、电致发光二极管、激光器、光电探测器、太阳能电池等光电领域的应用情况,最后对CsPbX3纳米晶领域存在的问题和面临的挑战进行了分析和评述。  相似文献   

11.
Controlled synthesis of semiconductor nanostructures in the liquid phase   总被引:2,自引:0,他引:2  
Zhuang Z  Peng Q  Li Y 《Chemical Society reviews》2011,40(11):5492-5513
The microstructure (composition, size and shape etc.) of semiconductor nanocrystals determine the electronic density of states of semiconductor nanomaterials and ultimately determine their optical and electrical properties. Semiconductor nanocrystal advanced structures, such as hybrid nanostructures and nanocrystal superlattices, not only integrate the function of individual nanocrystals, but also brings the materials collective and synchronic properties. How to control the monodispersity, composition and structure of as-prepared semiconductor nanocrystals during their syntheses, as well as their furthermore assembly, has been a hot research area in this decade. This critical review focuses on the development of synthetic and assembly methods (techniques) of semiconductor nanocrystals processed in the liquid phase. Emphasis is on the synthesis methodology, microstructure related properties of semiconductor nanocrystals, and their applications (243 references).  相似文献   

12.
Quantum dots (QDs), also named semiconductor nanocrystals, have initiated a new realm of bioscience by combining nanomaterials with biology, which will profoundly influence future biological and biomedical research. In this review, we describe the extraordinary optical properties of QDs and developments in methods for their synthesis. We focus on fluorescent imaging with QDs both in vitro and in vivo, and the cytotoxicity of QDs and potential barriers to their use in practical biomedical applications. Finally, we provide insights into improvements aimed at decreasing the cytotoxicity of QDs and the future outlook of QD applications in biomedical fields.
Figure
The unique tunable optical and chemical properties of QDs have been exploited in a growing array of biomedical applications including clinical diagnostics and molecular, cellular, and tumor imaging  相似文献   

13.
This critical review covers the use of carbon nanomaterials (single-wall carbon nanotubes, multi-wall carbon nanotubes, graphene, and carbon quantum dots), semiconductor quantum dots, and composite materials based on the combination of the aforementioned materials, for analytical applications using electrogenerated chemiluminescence. The recent discovery of graphene and related materials, with their optical and electrochemical properties, has made possible new uses of such materials in electrogenerated chemiluminescence for biomedical diagnostic applications. In electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), electrochemically generated intermediates undergo highly exergonic reactions, producing electronically excited states that emit light. These electron-transfer reactions are sufficiently exergonic to enable the excited states of luminophores, including metal complexes, quantum dots and carbon nanocrystals, to be generated without photoexcitation. In particular, this review focuses on some of the most advanced and recent developments (especially during the last five years, 2010–2014) related to the use of these novel materials and their composites, with particular emphasis on their use in medical diagnostics as ECL immunosensors.  相似文献   

14.
High-quality, monodisperse PbS-Au(1), PbS-Au(4), and PbS-Au(n) nanostructures have been synthesized via a facile and convenient solution chemistry approach. HRTEM images of these nanostructures showed good selectivity of gold deposition on the semiconductor in several spatially correlated directions. The formation of these regular nanostructures can be explained by the difference in polarity of crystal facets that led to the selective growth of metal on the semiconductor surface. Owing to their narrow size distribution and intrinsic high-symmetry, the resulting PbS-Au(4) and PbS-Au(n) heterogeneous nanostructures could spontaneously self-assemble into ordered arrays with different symmetries. From the results of the pump-probe measurements, the presence of Au in PbS-Au(4) nanostructures has substantially altered the nonlinear optical response of PbS nanocrystals.  相似文献   

15.
Introducing a few atoms of impurities or dopants in semiconductor nanocrystals can drastically alter the existing properties or even introduce new properties. For example, mid-gap states created by doping tremendously affect photocatalytic activities and surface controlled redox reactions, generate new emission centers, show thermometric optical switching, make FRET donors by enhancing the excited state lifetime, and also create localized surface plasmon resonance induced low energy absorption. In addition, researchers have more recently started focusing their attention on doped nanocrystals as an important and alternative material for solar energy conversion to meet the current demand for renewable energy. Moreover, the electrical and magnetic properties of the host are also strongly altered on doping. These beneficial dopant-induced changes suggest that doped nanocrystals with proper selections of dopant–host pairs may be helpful for generating designer materials for a wide range of current technological needs. How properties relate to the doping of a variety of semiconductor nanocrystals are summarized in this Review.  相似文献   

16.
We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2S(h3/2)1S(e) excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II-VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II-VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II-VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features.  相似文献   

17.
DNA nanostructures have shown excellent prospects in biomedical applications owing to their unique sequence programmability, function designability, and biocompatibility. As a type of unique DNA–inorganic hybrid nanostructures, DNA nanoflowers (DNFs) have attracted considerable attention in the past few years. Precise design of the DNA sequence enables the functions of DNFs to be customized. Specifically, DNFs exhibit high physiological stability and more diverse properties by virtue of the incorporation of inorganic materials, which in turn have been applied in an assortment of biomedical fields. In this review, the design, synthesis, and biomedical applications of programmable DNFs are discussed. First, the background of DNA-based materials and the fundamentals of DNFs are briefly introduced. In the second part, two synthetic methods of DNFs are categorized as the rolling circle amplification and salt aging method, focusing on the formation mechanism of DNFs and differences between the synthetic methods. In the third part, the biomedical applications of DNFs functional materials are summarized, including biosensing, bioimaging, and therapeutics. Finally, the challenges and future opportunities of DNFs are discussed toward more widespread applications.  相似文献   

18.
荧光量子点(又称为半导体纳米晶体)是一种新兴的无机发光材料, 由于其具有独特的结构和光电性能, 在发光二极管、太阳能电池及生命科学等领域有广泛的应用. 目前, 有机相合成法和水相合成法已被成功地用于荧光量子点的合成. 与有机相合成法相比, 水相合成量子点方法简单、绿色且廉价, 合成的量子点水溶性好, 在生物医学等领域具有很好的应用前景. 本文主要介绍荧光量子点的水相合成方法及其在化学和生物分析中的应用, 并对其发展趋势进行了展望.  相似文献   

19.
多功能纳米晶的制备、性能及其应用是材料、化学、能源、生物医学等领域十分关注的课题之一。基于掺杂调控纳米晶生长和性能的思想,发展了纳米晶修饰和复合的概念和技术,使用绿色安全的化学溶液法结合外延生长技术合成了巯基丙酸(MPA)包覆的掺杂CuInS2/CdS基纳米晶材料。通过适当调整掺杂异价离子的种类,实现了对CuInS2/CdS基纳米晶显微结构和性能的调控,获得了具有特定相结构、组分、尺度和光学性能(吸收性质、光学带隙、发光强度)的纳米晶。存在于基质晶体中不同金属掺杂离子,会造成半导体的禁带中间产生掺杂能级,导致二次跃迁,进而产物体现出不同的禁带宽度。掺杂Co 2+、Fe 2+、Er 3+离子的CuInS2/CdS纳米晶光致发光(PL)峰强度降低明显,这是由于Co 2+、Fe 2+、Er 3+离子掺杂有效地抑制了空穴-电子对的复合,降低了纳米晶的光生电子-空穴复合几率,使得其光催化活性得到增强。这些半导体纳米材料在光催化、能量转换与储存方面具有良好的应用潜力。  相似文献   

20.
We demonstrate a novel synthetic scheme that can be used to differentially guide the shape of PbS semiconductor nanocrystals. Our study first demonstrates the discovery of single-crystalline star-shaped nanocrystals as novel transient species. We then carefully probe their shape evolution toward other novel nanostructures (e.g., tadpole-, L-, T-, cross-shapes, highly faceted star shapes, truncated octahedrons and cubes, etc.) and systematically elucidate the key parameters that control these final structures. In principle, through programming these growth parameters, the desired architecture of building blocks of other kinds of nano materials can be constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号