首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The rapidly expanding list of pharmacologically important targets has highlighted the need for ways to discover new inhibitors that are independent of functional assays. We have utilized peptides to detect inhibitors of protein function. We hypothesized that most peptide ligands identified by phage display would bind to regions of biological interaction in target proteins and that these peptides could be used as sensitive probes for detecting low molecular weight inhibitors that bind to these sites. RESULTS: We selected a broad range of enzymes as targets for phage display and isolated a series of peptides that bound specifically to each target. Peptide ligands for each target contained similar amino acid sequences and competition analysis indicated that they bound one or two sites per target. Of 17 peptides tested, 13 were found to be specific inhibitors of enzyme function. Finally, we used two peptides specific for Haemophilus influenzae tyrosyl-tRNA synthetase to show that a simple binding assay can be used to detect small-molecule inhibitors with potencies in the micromolar to nanomolar range. CONCLUSIONS: Peptidic surrogate ligands identified using phage display are preferentially targeted to a limited number of sites that inhibit enzyme function. These peptides can be utilized in a binding assay as a rapid and sensitive method to detect small-molecule inhibitors of target protein function. The binding assay can be used with a variety of detection systems and is readily adaptable to automation, making this platform ideal for high-throughput screening of compound libraries for drug discovery.  相似文献   

2.
Toxic heavy metal pollution is a global problem occurring in air, soil as well as water. There is a need for a more cost effective, renewable remediation technique, but most importantly, for a recovery method that is selective for one specific metal of concern. Phage display technology has been used as a powerful tool in the discovery of peptides capable of exhibiting specific affinity to various metals or metal ions. However, traditional phage display is mainly conducted in batch mode, resulting in only one equilibrium state hence low-efficiency selection. It is also unable to monitor the selection process in real time mode. In this study, phage display technique was incorporated with chromatography procedure with the use of a monolithic column, facilitating multiple phage-binding equilibrium states and online monitoring of the selection process in search of affinity peptides to Pb2+. In total, 17 candidate peptides were found and their specificity toward Pb2+ was further investigated with bead-based enzyme immunoassay (EIA). A highly specific Pb2+ binding peptide ThrAsnThrLeuSerAsnAsn (TNTLSNN) was obtained. Based on our knowledge, this is the first report on a new chromatographic biopanning method coupled with monolithic column for the selection of metal ion specific binding peptides. It is expected that this monolith-based chromatographic biopanning will provide a promising approach for a high throughput screening of affinity peptides cognitive of a wide range of target species.  相似文献   

3.
An increasing number of peptides with specific binding affinity to inorganic materials are being isolated using combinatorial peptide libraries without prior knowledge about the interaction between peptides and target materials. The lack of understanding of the mechanism and the contribution of constituent amino acids to the peptides' inorganic-binding ability poses an obstacle to optimizing and tuning of the binding affinity of peptides to inorganic materials and thus hinders the practical application of these peptides. Using the phage surface display technique, we previously identified a disulfide-bond-constrained peptide (-CHKKPSKSC-, STB1) cognitive of TiO2. In the present study, the interaction of STB1 with TiO2 was probed using a series of point mutants of STB1 displayed on phage surfaces. Their binding affinity was measured using a quartz crystal microbalance with energy dissipation measurement and compared on the basis of the delta f or delta D values. The three K residues of STB1 were found to be essential and sufficient for phage particle binding to TiO2. One mutant with five K residues showed not stronger but weaker binding affinity than STB1 due to its conformational restriction, as illustrated by molecular dynamics simulation, to align five K residues in a way conducive to their simultaneous interaction with the TiO2 surface. The contextual influence of noncharged residues on STB1's binding affinity was also investigated. Our results may provide insight into the electrostatic interaction between peptides and inorganic surfaces.  相似文献   

4.
The transfer of peptides identified through the phage display technology to clinical applications is difficult. Major drawbacks are the metabolic degradation and label instability. The aim of our work is the optimization of DUP-1, a peptide which was identified by phage display to specifically target human prostate carcinoma. To investigate the influence of chelate conjugation, DOTA was coupled to DUP-1 and labeling was performed with 111In. To improve serum stability cyclization of DUP-1 and targeted D-amino acid substitution were carried out. Alanine scanning was performed for identification of the binding site and based on the results peptide fragments were chemically synthesized. The properties of modified ligands were investigated in in vitro binding and competition assays. In vivo biodistribution studies were carried out in mice, carrying human prostate tumors subcutaneously. DOTA conjugation resulted in different cellular binding kinetics, rapid in vivo renal clearance and increased tumor-to-organ ratios. Cyclization and D-amino acid substitution increased the metabolic stability but led to binding affinity decrease. Fragment investigation indicated that the sequence NRAQDY might be significant for target-binding. Our results demonstrate challenges in optimizing peptides, identified through phage display libraries, and show that careful investigation of modified derivatives is necessary in order to improve their characteristics.  相似文献   

5.
Ligands selected from phage-displayed random peptide libraries tend to be directed to biologically relevant sites on the surface of the target protein. Consequently, peptides derived from library screenings often modulate the target protein's activity in vitro and in vivo and can be used as lead compounds in drug design and as alternatives to antibodies for target validation in both genomics and drug discovery. This review discusses the use of phage display to identify membrane receptor modulators with agonistic or antagonistic activities. Because isolating or producing recombinant membrane proteins for use as target molecules in library screening is often impossible, innovative selection strategies such as panning against whole cells or tissues, recombinant receptor ectodomains, or neutralizing antibodies to endogenous binding partners were devised. Prominent examples from a two-decade history of peptide phage display will be presented, focusing on the design of affinity selection experiments, methods for improving the initial hits, and applications of the identified peptides.  相似文献   

6.
Databases and computational tools for mimotopes have been an important part of phage display study. Five special databases and eighteen algorithms, programs and web servers and their applications are reviewed in this paper. Although these bioinformatics resources have been widely used to exclude target-unrelated peptides, characterize small molecules-protein interactions and map protein-protein interactions, a lot of problems are still waiting to be solved. With the improvement of these tools, they are expected to serve the phage display community better.  相似文献   

7.
The development of a method for high-throughput, automated proteomic screening could impact areas ranging from fundamental molecular interactions to the discovery of novel disease markers and therapeutic targets. Surface display techniques allow for efficient handling of large molecular libraries in small volumes. In particular, phage display has emerged as a powerful technology for selecting peptides and proteins with enhanced, target-specific binding affinities. Yet, the process becomes cumbersome and time-consuming when multiple targets are involved. Here we demonstrate for the first time a microfluidic chip capable of identifying high affinity phage-displayed peptides for multiple targets in just a single round and without the need for bacterial infection. The chip is shown to be able to yield well-established control consensus sequences while simultaneously identifying new sequences for clinically important targets. Indeed, the confined parameters of the device allow not only for highly controlled assay conditions but also introduce a significant time-reduction to the phage display process. We anticipate that this easily-fabricated, disposable device has the potential to impact areas ranging from fundamental studies of protein, peptide, and molecular interactions, to applications such as fully automated proteomic screening.  相似文献   

8.
Messenger RNA display of peptides containing non-proteinogenic amino acids, referred to as RaPID system, has become one of the leading methods to express libraries consisting of more than trillion-members of macrocyclic peptides, which allows for discovering de novo bioactive ligands. Ideal macrocyclic peptides should have dissociation constants (KD) as low as single-digit values in the nanomolar range towards a specific target of interest. Here, a twofold strategy to discover optimized macrocyclic peptides within this affinity regime is described. First, benzyl thioether cyclized peptide libraries were explored to identify tight binding hits. To obtain more insights into critical sequence information, sequence alignment was applied to guide rational mutagenesis for the improvement of their binding affinity. Using this twofold strategy, benzyl thioether macrocyclic peptide binders against Lys48-linked ubiquitin dimer (K48-Ub2) were successfully obtained that display KD values in the range 0.3–1.2 nm , which indicate binding two orders of magnitude stronger than those of macrocyclic peptides recently reported. Most importantly, this macrocyclic peptide also showed an improved cellular inhibition of the K48-Ub2 recognition by deubiquitinating enzymes and the 26S proteasome, resulting in the promotion of apoptosis in cancer cells.  相似文献   

9.
Phage display is a powerful technique that enables easy identification of targets for any type of ligand. Targets are displayed at the phage surface as a fusion protein to one of the phage coat proteins. By means of a repeated process of affinity selection on a ligand, specific enrichment of displayed targets will occur. In our studies using C-terminal display of cDNA fragments to phage coat protein p6, we noticed the occasional enrichment of targets that do not contain an open reading frame. This event has previously been described in other phage display studies using N-terminal display of targets to phage coat proteins and was due to uncommon translational events like frameshifting. The aim of this study was to examine if C-terminal display of targets to p6 is also subjected to frameshifting. To this end, an enriched target not containing an open reading frame was selected and an E-tag was coupled at the C-terminus in order to measure target display at the surface of the phage. The tagged construct was subsequently expressed in 3 different reading frames and display of both target and E-tag measured to detect the occurrence of frameshifting. As a result, we were able to demonstrate display of the target both in the 0 and in the +1 reading frame indicating that frameshifting can also take place when C-terminal fusion to minor coat protein p6 is applied.  相似文献   

10.
Phage display is widely used for the selection of target-specific peptide sequences. Presentation of phage peptides on a multivalent platform can be used to (partially) restore the binding affinity. Here, we present a detailed analysis of the effects of valency, linker choice, and receptor density on binding affinity of a multivalent architecture, using streptavidin (SA) as model multivalent receptor. For surfaces with low receptor densities, the SA binding affinity of multivalent dendritic phage peptide constructs increases over 2 orders of magnitude over the monovalent species (e.g., K(d,mono) = 120 μM vs K(d,tetra) = 1 μM), consistent with previous work. However, the affinity of the SA-binding phage presenting the exact same peptides was 16 pM when dense receptor surfaces used for initial phage display were used in assays. The phage affinity for SA-coated surfaces weakens severely toward the nanomolar regime when surface density of SA is decreased. A similarly strong dependence in this respect was observed for dendritic phage analogues. When presented with a dense SA-coated surface, dendrimer display affords up to a 10(4)-fold gain in affinity over the monovalent peptide. The interplay between ligand valency and receptor density is a fundamental aspect of multivalent targeting strategies in biological systems. The perspective offered here suggests that in vivo targeting schemes might best be served to conduct ligand selection under physiologically relevant receptor density surfaces, either by controlling the receptor density placed at the selection surface or by using more biologically relevant intact cells and tissues.  相似文献   

11.
Screening of phage display libraries allows rapid identification of peptides binding to a target. However, functional analysis of the phage sequences and their reproduction as soluble and stable peptides are often the most time-consuming part in the screening. We have used here intein-based peptide biosynthesis to produce a phage-display derived gelatinase inhibitory peptide CTTHWGFTLC and to identify the critical residues for gelatinase inhibitory activity by performing alanine-scanning mutagenesis. By biosynthetic incorporation of 5-fluorotryptophan, we obtained an inhibitor of MMP-2 and MMP-9 gelatinases that showed a 6-fold enhancement in serum stability in comparison to the wild-type peptide. The new peptide also had an improved ability to inhibit tumor cell migration. These studies indicate the utility of intein methodology for synthesis and design of peptides obtained by phage display.  相似文献   

12.
Phage display is a powerful method for selecting peptides with novel binding functions. Synthetic peptidomimetic chemistry is a powerful tool for creating structural diversity in ligands as a means to establish structure-activity relationships. Here we illustrate a method of bridging these two methodologies, by starting with a disulfide bridged phage display peptide which binds a human antibody Fc fragment (Delano et al. Science 2000, 287, 1279) and creating a backbone cyclic beta-hairpin peptidomimetic with 80-fold higher affinity for the Fc domain. The peptidomimetic is shown to adopt a well-defined beta-hairpin conformation in aqueous solution, with a bulge in one beta-strand, as seen in the crystal structure of the phage peptide bound to the Fc domain. The higher binding affinity of the peptidomimetic presumably reflects the effect of constraining the free ligand into the conformation required for binding, thus highlighting in this example the influence that ligand flexibility has on the binding energy. Since phage display peptides against a wide variety of different proteins are now accessible, this approach to synthetic ligand design might be applied to many other medicinally and biotechnologically interesting target proteins.  相似文献   

13.
Genetic engineering allows modification of bacterial and bacteriophage genes, which code for surface proteins, enabling display of random peptides on the surface of these microbial vectors. Biologic peptide libraries thus formed are used for high-throughput screening of clones bearing peptides with high affinity for target proteins. There are reports of many successful affinity selections performed with phage display libraries and substantially fewer cases describing the use of bacterial display systems. In theory, bacterial display has some advantages over phage display, but the two systems have never been experimentally compared. We tested both techniques in selecting streptavidin-binding peptides from two commercially available libraries. Under similar conditions, selection of phage-displayed peptides to model protein streptavidin proved convincingly better.  相似文献   

14.
Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity.  相似文献   

15.
The cloning of genes based on protein function has become a powerful tool for protein discovery and should play an important role in proteomics in general. We have recently reported a technique for the functional identification of protein targets by combining traditional affinity chromatography with cDNA phage display. This procedure, referred to as display cloning, directly couples biologically active natural products to the gene of their protein cellular target. We now report the cloning of a human gene, the domain of F1 ATP synthase, using a synthetic scaffold molecule which serves as a prototype for a diverse chemical library. The ability to select genes from cDNA libraries using probes from combinatorial libraries would greatly increase the number of small molecule/protein interactions that can be identified. This method might prove valuable in furthering our understanding of biology and its application toward drug development.  相似文献   

16.
WD40 is a ubiquitous domain presented in at least 361 human proteins and acts as scaffold to form protein complexes. Among them, WDR5 protein is an important mediator in several protein complexes to exert its functions in histone modification and chromatin remodeling. Therefore, it was considered as a promising epigenetic target involving in anti-cancer drug development. In view of the protein–protein interaction nature of WDR5, we initialized a campaign to discover new peptide-mimic inhibitors of WDR5. In current study, we utilized the phage display technique and screened with a disulfide-based cyclic peptide phage library. Five rounds of biopanning were performed and isolated clones were sequenced. By analyzing the sequences, total five peptides were synthesized for binding assay. The four peptides are shown to have the moderate binding affinity. Finally, the detailed binding interactions were revealed by solving a WDR5-peptide cocrystal structure.  相似文献   

17.
Technologies to develop and evolve the function of proteins and, in particular, antibodies have developed rapidly since the introduction of phage display. Importantly, it has become possible to identify molecules with binding properties that cannot be found by other means. A range of different approaches to create general libraries that are useful for the selection of such molecules specific for essentially any kind of target have emerged. We herein review some of the most prominent approaches in the field and in particular discuss specific features related to the development of antibody libraries based on single antibody framework scaffolds. This approach not only permits identification of a range of specific binders, but also facilitates further evolution of initially derived molecules into molecules with optimised functions.  相似文献   

18.
Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.  相似文献   

19.
Electrophilic peptides that form an irreversible covalent bond with their target have great potential for binding targets that have been previously considered undruggable. However, the discovery of such peptides remains a challenge. Here, we present Rosetta CovPepDock, a computational pipeline for peptide docking that incorporates covalent binding between the peptide and a receptor cysteine. We applied CovPepDock retrospectively to a dataset of 115 disulfide-bound peptides and a dataset of 54 electrophilic peptides. It produced a top-five scoring, near-native model, in 89% and 100% of the cases when docking from the native conformation, and 20% and 90% when docking from an extended peptide conformation, respectively. In addition, we developed a protocol for designing electrophilic peptide binders based on known non-covalent binders or protein–protein interfaces. We identified 7154 peptide candidates in the PDB for application of this protocol. As a proof-of-concept we validated the protocol on the non-covalent complex of 14-3-3σ and YAP1 phosphopeptide. The protocol identified seven highly potent and selective irreversible peptide binders. The predicted binding mode of one of the peptides was validated using X-ray crystallography. This case-study demonstrates the utility and impact of CovPepDock. It suggests that many new electrophilic peptide binders can be rapidly discovered, with significant potential as therapeutic molecules and chemical probes.

We developed Rosetta CovPepDock, a computational pipeline for covalent peptide docking. We showed it is highly accurate in retrospective benchmarks, and applied it prospectively to design potent and selective covalent binders of 14-3-3σ.  相似文献   

20.
Naturally occurring peptides often possess macrocyclic and N-methylated backbone. These features grant them structural rigidity, high affinity to targets, proteolytic resistance, and occasionally membrane permeability. Because such peptides are produced by either nonribosomal peptide synthetases or enzymatic posttranslational modifications, it is yet a formidable challenge in degenerating sequence or length and preparing libraries for screening bioactive molecules. Here, we report a new means of synthesizing a de novo library of “natural product-like” macrocyclic N-methyl-peptides using translation machinery under the reprogrammed genetic code, which is coupled with an in vitro display technique, referred to as RaPID (random nonstandard peptides integrated discovery) system. This system allows for rapid selection of strong binders against an arbitrarily chosen therapeutic target. Here, we have demonstrated the selection of anti-E6AP macrocyclic N-methyl-peptides, one of which strongly inhibits polyubiqutination of proteins such as p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号