首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang B  Tian H  Xu J  Guan Y 《Talanta》2006,69(4):996-1000
An integrated light emitting diode (LED)-induced fluorescence detector was described and evaluated. The LED and its related components including lens and interference filter, the optical fiber used to collect fluorescence, and the capillary column are integrated into a substrate block, which eliminates the need of align procedure of the fiber and the capillary. Forty-fold enhancement of sensitivity was obtained compared with our previous work and the detection limit for fluorescein was 5 nM. Application of the detector for the analysis of FITC-labeled Ephedrine extract was demonstrated.  相似文献   

2.
Li HF  Lin JM  Su RG  Uchiyama K  Hobo T 《Electrophoresis》2004,25(12):1907-1915
A simple and easy-to-use integrated laser-induced fluorescence detector for microchip electrophoresis was constructed and evaluated. The fluid channels and optical fiber channels in the glass microchip were fabricated using standard photolithographic techniques and wet chemical etching. A 473 nm diode-pumped laser was used as the excitation source, and the collimation and collection optics and mirrors were discarded by using a multimode optical fiber to couple the excitation light straight into the microchannel and placing the microchip directly on the top of the photomultiplier tube. A combination of filter systems was incorporated into a poly(dimethylsiloxane) layer, which was reversibly sealed to the bottom of the microchip to eliminate the scattering excitation light reaching to the photomultiplier tube. Fluorescein/calcein samples were taken as model analytes to evaluate the performance with respect to design factors. The detection limits were 0.05 microM for fluorescein and 0.18 microM for calcein, respectively. The suitability of this simple detector for fluorescence detection was demonstrated by baseline separation of fluorescein isothiocyanate (FITC)-labeled arginine, phenylalanine, and glycine and FITC within 30 s at separation length of 3.8 cm and electrical field strength of 600 V/cm.  相似文献   

3.
Feng-Bo Yang 《Talanta》2009,78(3):1155-203
In this work, a simple and low-cost miniaturized light-emitting diode induced fluorescence (LED-IF) detector based on an orthogonal optical arrangement for capillary electrophoresis (CE) was developed, using a blue concave light-emitting diode (LED) as excitation source and a photodiode as photodetector. A lens obtained from a waste DVD-ROM was used to focus the LED light beam into an ∼80 μm spot. Fluorescence was collected with an ocular obtained from a pen microscope at 45° angle, and passed through a band-pass filter to a photodiode detector. The performance of the LED-IF detector was demonstrated in CE separations using sodium fluorescein and fluorescein isothiocyanate (FITC)-labeled amino acids as model samples. The limit of detection for sodium fluorescein was 0.92 μM with a signal-to-noise ratio (S/N) of 3. The total cost of the LED-IF detector was less than $ 50.  相似文献   

4.
Yang B  Tan F  Guan Y 《Talanta》2005,65(5):1303-1306
A novel fluorescence detector based on collinear scheme using a brightness light-emitting diode emitting at 470 nm as excitation source is described. The detector is assembled by all-solid-state optical-electronic components and coupled with capillary electrophoresis using on-column detection mode. Fluorescein isothiocyanate (FITC) and FITC-labeled amino acids and small molecule peptide as test analyte were used to evaluate the detector. The concentration limit of detection for FITC-labeled phenylalanine was 10 nM at a signal-to-noise ratio (S/N) of 3. The system exhibited good linear responses in the range of 1 × 10−7 to 2 × 10−5 M (R2 = 0.999).  相似文献   

5.
A microfluidic device with an integrated fluorescence detection system has been developed in order to miniaturize the entire analytical system. A blue or green light-emitting diode (LED) and an optical fiber were mounted in a polydimethylsiloxane-based microchip. The performance of this device was evaluated by microchip electrophoresis. When a green LED was used as the light source, the calibration curve of Sulforhodamine-101 was linear over the range 1–100 M. The detection limit was found to be 600 nM (240 amol) for a S/N ratio of 3. When using a blue LED, the calibration curve of Fluorescein was linear over the range 0.2–100 M. The detection limit was estimated to be 120 nM (50 amol) (S/N=3). The detection sensitivity per unit power was comparable to that of LIF. The RSD values for the migration time, peak height and peak area were 0.74, 7.18 and 9.45%, respectively. The integrated microfluidic device was successfully used to determine amino acid derivatives.  相似文献   

6.
Zhao S  Yuan H  Xiao D 《Electrophoresis》2006,27(2):461-467
A highly sensitive optical fiber light-emitting diode (LED)-induced fluorescence detector for CE has been constructed and evaluated. In this detector, a violet or blue LED was used as the excitation source and an optical fiber with 40 microm OD was used to transmit the excitation light. The upper end of the fiber was inserted into the separation capillary and was situated right at the detection window. Fluorescence emission was collected by a 40 x microscope objective, focused on a spatial filter, and passed through a cutoff filter before reaching the photomultiplier tube. Output signals were recorded and processed with a computer using in-house written software. The present CE/fluorescence detector deploys a simple and inexpensive optical system that requires only an LED as the light source. Its utility was successfully demonstrated by the separation and determination of amino acids (AAs) labeled with naphthalene-2,3-dicarboxaldehyde (NDA) and FITC. Low detection limits were obtained ranging from 17 to 23 nM for NDA-tagged AAs and 8 to 12 nM for FITC-labeled AAs (S/N=3). By virtue of such valuable features as low cost, convenience, and miniaturization, the presented detection scheme was proven to be attractive for sensitive fluorescence detection in CE.  相似文献   

7.
探讨了以亮度发光二极管为诱导荧光检测激发光源的可行性,考察了直流驱动和脉冲驱动发光二极管(LED)对输出光强的影响以及LED塑料保护层厚度对输出光强的影响。发现脉冲驱动比直流驱动能提高光强3倍,无塑料保护层相对有保护层可提高光强2.5倍。采用毛细管电泳柱上检测方式对检测系统进行了评价,最小检出浓度为0.18μmol/L。结果表明该装置可以满足普通分析需求。  相似文献   

8.
A novel method for speciation analysis of inorganic arsenic was developed by on-line hyphenating microchip capillary electrophoresis (chip-CE) with hydride generation atomic fluorescence spectrometry (HG-AFS). Baseline separation of As(III) and As(V) was achieved within 54 s by the chip-CE in a 90 mm long channel at 2500 V using a mixture of 25 mmol l(-1) H3BO3 and 0.4 mmol l(-1) CTAB (pH 8.9) as electrolyte buffer. The precisions (RSD, n=5) ranged from 1.9 to 1.4% for migration time, 2.1 to 2.7% for peak area, and 1.8 to 2.3% for peak height for the two arsenic species at 3.0 mg l(-1) (as As) level. The detection limits (3sigma) for As(III) and As(V) based on peak height measurement were 76 and 112 microg l(-1) (as As), respectively. The recoveries of the spikes (1 mg l(-1) (as As) of As(III) and As(V)) in four locally collected water samples ranged from 93.7 to 106%.  相似文献   

9.
We constructed a simple fluorescence detector for both direct and indirect CE methods using a blue light-emitted diode (470 nm) as excitation source, a bifurcated optical fiber as a waveguide, and a CCD camera as a detector. The connection of all the components is fairly easy even for nonexperts and the use of a CCD camera improves the applicability of this detector compared to the others using PMTs because it permits the recording of 2-D electropherograms or phosphorescence measurements. This detector provides a compact, low cost, and rapid system for the determination of native fluorescence compounds which have high quantum yields by CE with direct fluorescence detection, showing an LOD of 2.6 x 10(-6) M for fluorescein; the determination of fluorescence derivative compounds by CE with direct fluorescence detection, showing an LOD of 1.6 x 10(-7) M for FITC-labeled 1,6-diaminohexane; and nonfluorescence compounds by CE with indirect fluorescence detection with an LOD of 2.7 x 10(-6) M for gallic acid.  相似文献   

10.
In this work, a new type of miniaturized fibre-coupled solid-state light source is demonstrated as an excitation source for fluorescence detection in capillary electrophoresis. It is based on a parabolically shaped micro-light emitting diode (μ-LED) array with a custom band-pass optical interference filter (IF) deposited at the back of the LED substrate. The GaN μ-LED array consisted of 270 individual μ-LED elements with a peak emission at 470 nm, each about 14 μm in diameter and operated as a single unit. Light was extracted through the transparent substrate material, and coupled to an optical fibre (OF, 400 μm in diameter, numerical aperture NA = 0.37), to form an integrated μ-LED-IF-OF light source component. This packaged μ-LED-IF-OF light source emitted approximately 225 μW of optical power at a bias current of 20 mA. The bandpass IF filter was designed to reduce undesirable LED light emissions in the wavelength range above 490 nm. Devices with and without IF were compared in terms of the optical power output, spectral characteristics as well as LOD values. While the IF consisted of only 7.5 pairs (15 layers) of SiO2/HfO2 layers, it resulted in an improvement of the baseline noise as well as the detection limit measured using fluorescein as test analyte, both by approximately one order of magnitude, with a LOD of 1 × 10−8 mol L−1 obtained under optimised conditions. The μ-LED-IF-OF light source was then demonstrated for use in capillary electrophoresis with fluorimetric detection. The limits of detection obtained by this device were compared to those obtained with a commercial fibre coupled LED device.  相似文献   

11.
Guchardi R  Schwarz MA 《Electrophoresis》2005,26(16):3151-3159
Sensitivity is a crucial point in the development applications for medicine or environmental samples in which the analytes are present in the nanomolar range. Besides further technical development of detection systems, the multiplex sample injection technique can be applied for enhancing the signal-to-noise ratio. Hadamard transform is easily applied to microchip electrophoresis due to the fact that sample injection is generally achieved through cross, double-tee, or tee injector structures. This paper reports the first demonstration of a modified Hadamard transform electrophoresis on a microchip by using an amperometric detector. Contrary to the previous Hadamard applications, the resolution (number of points per unit of time) of electropherograms obtained is independent of the number of injections.  相似文献   

12.
We report on the coupling of a polymer-based microfluidic chip to a MALDI-TOF MS using a rotating ball interface. The microfluidic chips were fabricated by micromilling a mold insert into a brass plate, which was then used for replicating polymer microparts via hot embossing. Assembly of the chip was accomplished by thermally annealing a cover slip to the embossed substrate to enclose the channels. The linear separation channel was 50 microm wide, 100 microm deep, and possessed an 8 cm effective length separation channel with a double-T injector (V(inj) = 10 nL). The exit of the separation channel was machined to allow direct contact deposition of effluent onto a specially constructed rotating ball inlet to the mass spectrometer. Matrix addition was accomplished in-line on the surface of the ball. The coupling utilized the ball as the cathode transfer electrode to transport sample into the vacuum for desorption with a 355 nm Nd:YAG laser and analyzed on a TOF mass spectrometer. The ball was cleaned online after every rotation. The ability to couple poly(methylmethacrylate) microchip electrophoresis devices for the separation of peptides and peptide fragments produced from a protein digest with subsequent online MALDI MS detection was demonstrated.  相似文献   

13.
以发射波长473nm的半导体激光泵浦固体激光器(LD DPSSL)为激发光源,研制了一种小型模块化激光诱导荧光检测器。以异硫氰酸荧光素(FITC)为荧光探针,毛细管电泳柱上检测(0.05mmi.d)评价了该体系,得到了5×10-12mol L的浓度检出限。利用该系统考察了氨基酸、实际样品中B族维生素的检测。  相似文献   

14.
We describe a miniaturized instrument capable of performing 2-DE. Our miniaturized device is able to perform IEF and polyacrylamide slab gel electrophoresis (PASGE) in the same unit. It consists of a compartment for a first-dimensional IEF gel, which is connected to a second-dimensional PASGE gel. The focused samples are automatically transferred from the IEF gel to the PASGE gel by electromigration. Our preliminary experiments show that the device is able to focus and separate a mixture of proteins in approximately 1 h, excluding the time required for the staining procedure. On average, the gel-to-gel retardation factor (Rf) variation was 6.2% (+/-0.9%) and pI variation was 2.5% (+/-0.6%). Separated protein spots were excised from stained gels, digested with trypsin, and further identified by MS, thus enabling direct proteomic analysis of the separated proteins.  相似文献   

15.
Chang W  Ono Y  Kumemura M  Korenaga T 《Talanta》2005,67(3):646-650
A microchip-based method was developed for on-line determination of trace sulfur dioxide (SO2) in air. Gaseous SO2, which diffused through the porous glass materials on the microchip, was absorbed into an absorption solution of triethanolamine (TEA) as sulfite ions and reacted with N-(9-acridinyl)maleimide (NAM), which was used as a fluorescent reagent. The fluorescence of NAM-sulfite in micro-fluidic channel was detected. The calibration curve of sulfite ions in the range of 1.5-30 μmol/L (SO2 3-60 ppbv) showed a linear relation R2 = 0.995, and the relative standard deviation (R.S.D.) was 1.9% for 10 μmol/L sulfite ions in five measurements. The entire measurement procedure was achieved by the integrated microchip, and the consumption of reagents was drastically reduced. It was satisfactory to apply this method to determine on-line the SO2 level in the air.  相似文献   

16.
We have developed a new method for the high-speed separation and high-sensitivity detection of complex oligosaccharides based on microchip electrophoresis (nu-CE) with light-emitting diode (LED) confocal fluorescence detection. Oligosaccharides labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS) were found to strongly adsorb to the surface of polymethylmethacrylate (PMMA) microchips. Accordingly, three classes of major dynamic coating additives were systematically investigated, and cellulose derivatives were found to specifically suppress such adsorption and allow high-performance separation on PMMA chips. Additive concentration, buffer pH and applied field strength were found to be key factors in the high-performance separation& of APTS-labeled oligosaccharides on PMMA chips. Under optimal conditions, 15 oligosaccharides in dextrin hydrolysate can be separated within 45 s with an electrophoretic separation efficiency of over 400 000 theoretical plates per meter. The relative standard deviation (RSD) values of migration times of fourteen oligosaccharides were less than 0.50% between six different channels, and the detection limit for APTS-labeled glucose was about 1.98 x 10(-8) mol/L or 8.61 amol with a signal-to-noise ratio (S/N) of 3. The high speed, high efficiency and high sensitivity of this micro-CE-based method indicate that it can be widely applied to analysis of complex oligosaccharides.  相似文献   

17.
The present study accents on the privileges of microchip-based electrophoresis to the conventional gel electrophoresis in separation of telomerase repeat amplification protocol/polymerase chain reaction (PCR) ladder products obtained in telomerase-catalyzed reaction in cancer cells. We try to clarify the interpretation of the results obtained by both electrophoretic procedures and to avoid misinterpretation as a result of PCR-dependent artefacts.  相似文献   

18.
建立了微流控芯片毛细管电泳激光诱导荧光检测法测定片剂中盐酸美西律含量的方法,对衍生条件和电泳条件进行了系统的考察。盐酸美西律经异硫氰酸荧光素(FITC)40℃衍生6h,以20 mmol/L硼砂为电泳缓冲溶液,进样30s后,分离电压2000V,可在1 min内完成一次检测。方法的检出限为0.022 mg/L、线性范围0.108~1.079 mg/L、相关系数0.994,加标回收率为99.7%~102.3%,方法适用于盐酸美西律的检测和质量控制。  相似文献   

19.
Wu Y  Lin JM  Su R  Qu F  Cai Z 《Talanta》2004,64(2):338-344
An end-channel amperometric detector with a guide tube for working electrode was designed and integrated on a home-made glass microchip. The guide tube was directly patterned and fabricated at the end of the detection reservoir, which made the fixation and alignment of working electrode relatively easy. The fabrication was carried out in a two-step etching process. A 30 μm carbon fiber microdisk electrode and Pt cathode were also integrated onto the amperometric detector. The characteristics and primary performance of the home-made microchip capillary electrophoresis (MCCE) were investigated with neurotransmitters. The baseline separation of dopamine (DA), catechol (CA) and epinephrine (EP) was achieved within 80 s. Separation parameters such as injection time, buffer components, pH of the buffer were studied. Relative standard deviations of not more than 6.0% were obtained for both peak currents and migration times. Under the selected separation conditions, the response for DA was linear from 5 to 200 μM and from 20 to 800 μM for CA. The limits of detection of DA and CA were 0.51 and 2.9 μM, respectively (S/N=3).  相似文献   

20.
A microchip capillary electrophoresis system with highly sensitive fluorescence detection is reported. The system was successfully constructed using an inverted fluorescence microscope, a highly sensitive photon counter, a photomultiplier tube (PMT) and a capillary electrophoresis microchip. This system can be applied to the fluorescence detection with various wavelengths (300-600 nm). Different fluorescence reagents require different excitation wavelengths. The wavelengths of UV light (300-385 nm), blue light (450-480 nm) and green light (530-550 nm) are employed to excite Titan yellow, fluorescence-5-isothiocyanate (FITC) and Rhodamine 6G, respectively. The detection limit (S/N = 3) of FITC is 7 × 10−10 M, which is 2-3 orders of magnitude lower than that obtained with the lamp-based fluorescence and PMT detection system and approaches the data gained by the laser-induced fluorescence detection. The linear relationship is excellent within the range of concentration 1.3 × 10−9 to 6.5 × 10−8 M FITC. It offers a new method to widen the application of the lamp-based fluorescence detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号