首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enthalpies of dilution of aqueous solutions of HCl, H3PO4, NaOH, NaH2PO4, Na2HPO4 and Na3PO4 in the molality range 0.1 to 1.0 mole-kg–1 have been determined at 30°C. The relative apparent molal enthalpies L of HCl, NaOH, NaH2PO4 and Na2HPO4 have been determined with the aid of an extended form of the Debye-Hückel limiting law. The relative apparent molal enthalpies for Na3PO4 solutions have been corrected for hydrolysis. A value of H H o =9525±150 cal-mole–1 was determined for the heat of hydrolysis of PO 4 –3 . This value gives H 3 o =3815±150 cal-mole–1 for the ionization of H2PO 4 , which is in good agreement with the value of H 3 o =3500±500 cal-mole–1 determined directly by Pitzer at 25°C. The relative apparent molal enthalpies for H3PO4 solutions have been corrected for ionization. A value of H 1 o =–1900±150 cal-mole–1 was obtained for the heat of ionization of H3PO4 to H++H2PO 4 . This value is in good agreement with the value of H 1 o =–2031 cal-mole–1 at 30°C determined by Harned and Owen from the temperature coefficient of the equilibrium constant and H 1 o =–1950±80 cal-mole–1 at 25°C determined from calorimetry by Pitzer.  相似文献   

2.
The solubilities of pentane, 2-methylbutane (isopentane) and cyclopentane were measured in liquid nitrogen at 77.4 K by the filtration method. The solubilities of the C5 hydrocarbons in liquid nitrogen at 77.4 K vary from 1.8×10–8 mole fraction for cyclopentane, to 3.0×10–8 mole fraction for pentane and 3.2×10–7 mole fraction for 2-metylbutane. Correlations between the solubilities of alkanes, alkenes and cyclic hydrocarbons in liquid nitrogen, and some properties of solutes [normal boiling point T b , enthalpy of vaporization at normal boiling point H b and the mean of the enthalpy of vaporization and the enthalpy of melting [(H b +H m )/2] are presented.  相似文献   

3.
Thermodynamic ion-association constants for calcium, cobalt, zinc, and cadmium sulfates in aqueous solutions were determined by means of conductivity measurements at various temperatures between 0°C and 45°C. The standard Gibbs energy, enthalpy, and entropy for the reaction M 2+ +SO 4 2– M 2+ ·SO 4 2– (M=Ca, Co, Zn, and Cd) were calculated from the temperature dependence of the ion-association constants. The values obtained are as follows: G 298 o =–12.42 kJ-mole –1 , H o =6.11 kJ-mole –1 , and S 298 o =62.1 J- o K –1 -mole –1 for Ca 2+ ·SO 4 2– ; G 298 o =–12.84 kJ-mole –1 , H o =5.00 kJ-mole –1 , and S 298 o =59.8 J- o K –1 -mole–1 for Co 2+ ·SO 4 2– ; G 298 o =–12.65 kJ-mole –1 , H o =8.65 kJ-mole –1 , and S 298 o =71.4 J- o K –1 -mole –1 for Zn 2+ ·SO 4 2– ; G 298 o =–13.28 kJ-mole –1 , H o =8.39 kJ-mole –1 , and S 298 o =72.7 J- o K –1 -mole –1 for Cd 2+ ·SO 4 2– .  相似文献   

4.
The differential enthalpies of solution of sodium nitrate in water have been measured calorimetrically at 25°C, from 0.5 to 10.4 mol (kg H2O)–1. The concentration dependence is described by the equation H=20.4537+1.0562m1/2-7.0568m+2.8659m3/2-0.3382m2 From the calorimetric measurements, the enthalpy of crystallization of sodium nitrate was calculated as Hc=9.98±0.16 kL-mol-1. The literature data on the solubility, activity and osmotic coefficients of NaNO3 at 25°C yielded a value of –9.98±0.38 kJ-mol–1. The good agreement between the experimental and calculated Hc values indicate the reliability of the input data.  相似文献   

5.
Summary The pentadentate macrocycle 1,4,7,10,13-penta-azacyclo-hexadecane [16]aneN5=(3)=L} has been prepared and a variety of copper(II), nickel(II) and cobalt(III) complexes of the ligand characterised. The copper complex [CuL](ClO4)2, on the basis of its d-d spectrum, appears to be square pyramidal, while [NiL(H2O)](ClO4)2 is octahedral. The copper(II) and nickel(II) complexes dissociate readily in acidic solution and these reactions have been studied kinetically. For the copper(II) complex, rate=kH[complex][H+]2 with kH =4.8 dm6 mol–2s–1 at 25 °C and I=1.0 mol dm–3 (NaClO4) with H=43 kJ mol–1 and S 298 =–89 JK–1 mol–1. Dissociation rates of the copper(II) complexes increase with ring size in the order: [15]aneN5 < [16]aneN5 < [17]aneN5. For the dissociation of the nickel(II) complex, rate=kH[Complex][H+] with kH=9.4×10–3 dm3mol–1 s–1 at 25 °C and I =1.0 mol dm–3 (NaClO4) with H=71 kJ mol–1 and S 298 =–47 JK–1mol–1.The cobalt(III) complexes, [CoLCl](ClO4)2, [CoL(H2O)]-(ClO4)3, [CoL(NO2)](ClO4)2, [CoL(DMF)](ClO4)3 (DMF=dimethylformamide) and [CoL(O2CH)](ClO4)2 have been characterised. The chloropentamine [CoCl([16]aneN5)]2+ undergoes rapid base hydrolysis with kOH=1.1× 105dm3 mol–1s–1 at 25°C and I=0.1 mol dm–3 (H=73 kJ mol–1 and S 298 =98 JK–1 mol–1). Rapid base hydrolysis of [CoL(NO2)]2+ is also observed and the origins of these effects are considered in detail.  相似文献   

6.
The melting process of NC is studied by using modulated differential scanning calorimetry (MDSC) technique, the microscope carrier method for measuring the melting point and the simultaneous device of the solid reaction cell in situ/RSFT-IR. The results show that the endothermic process in the MDSC curve is reversible. It is caused by the phase change from solid to liquid of the mixture of initial NC, decomposition partly into condensed phase products. The values of the melting point, melting enthalpy (Hm), melting entropy (Sm), the enthalpy of decomposition (Hdec) and the heat-temperature quotient (Sdec) obtained by the MDSC curve of NC at a heating rate of 10 K min–1 are 476.84 K, 205.6 J g–1, 0.4312 J g–1 K–1, –2475.0 J g–1 and –5.242 Jg–1K–1, respectively. The MDSC results of NC with different nitrogen contents show that with increasing the nitrogen content in NC, the absolute values of Hm, Sm, Hdec and Sdec increase.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
The enthalpy of formation for LiMyMn2–yO4 (M=Co, Cr, Li, Mg, Ni) was measured by a Tian-Calvet type high temperature isothermal microcalorimeter. The standard enthalpy of formation for LiMn2O4 at 876 K was evaluated to be Hf0=–1404.2±6.4 kJ mol–1. The partial substitution of Co and Ni for Mn decreased the absolute Hf0 value, while that of Cr and Mg for Mn increased the absolute Hf0 value. In the case of the partial substitution of Li for Mn, no marked change in Hf0 could be observed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
Recent determination of the standard enthalpy of formation of the ammonium azide f H O (NH N 3,c) and the assignment of the viscosity B-coefficient for the azide anion, B(N 3 ,aq), in aqueous solution enable us to estimate the standard enthalpy of formation of the gaseous azide anion, f H O (N 3 –,g , — a thermochemical magnitude in some dispute — to be 192 kJ-mol–1.  相似文献   

9.
Using flow microcalorimetry, the ion association reaction M2+(aq)+Fe(CN) 6 4– (aq)=MFe(CN) 6 2– (aq) (M=Ca, Mg) has been studied at 25°C over the ionic strength range 0.02 to 0.08 mol-dm–3. Analyses of the data to obtain Ho, the enthalpy change at infinite dilution, are described. The value obtained for Ho is sensitive to the kind of functions used to correct for non-ideal behavior.  相似文献   

10.
Heats of solution of 13 11 electrolytes in 1-propanol have been determined calorimetrically at various electrolyte concentrations, and extrapolated to zero concentration to give H s o values for these electrolytes. Together with literature data on three additional 11 electrolytes, these measurements yield a self-consistent set of single-ion enthalpies of transfer from water to 1-propanol. Values are tabulated for 10 univalent cations and five univalent anions. It is shown that the H t o (Ph 4 As+)=H t o (Ph 4 B) assumption yields chemically reasonable single-ion values. Using this assumption, it may be deduced that all the univalent ions studied have about the same enthalpy in 1-propanol as in methanol.  相似文献   

11.
Summary The kinetics of oxygen-transfer from [MoO2(Et-L-cys)2] to PPh3 and the reaction between [Mo2O3(Et-L-cys)4] and O2 in benzene solution have been investigated using spectrophotometric techniques between 25 and 40°. The rate laws-d[Mo6+]/dt = k1[Mo6+][PPh3] with k1 (at 35°) = 2.95×10–4dm3mol–1s–1 and -d[Mo5+]/dt = 2k3[Mo5+][O2] with k3 (at 35°) = 6.3×10–2 dm3mol–1s–1 account for the kinetic data obtained with activation parameters (at 35°) of H = 46 kJ mol–1, S = –153 JK–1mol–1, and H = 50.8 kJ mol–1, S = –95 JK–1 mol–1 respectively.  相似文献   

12.
Temperature dependence was studied for relative quantum yields of emission from some exciplexes of pyrene, 1,12-benzoperylene, and 9-cyanoanthracene with methoxybenzenes or methylnaphthalenes in solvents of different polarity (ranging from toluene to acetonitrile). The enthalpy H Ex *, the entropy S Ex *, and the Gibbs free energy G Ex *of formation of the exciplexes were determined. Depending of the Gibbs free energy of excited-state electron transfer (G et *) and solvent polarity, the values of H Ex *, S Ex *, and G Ex *vary over the ranges from –5 to –40 kJ mol–1, from +3 to –90 J mol–1K–1, and from +3 to –21 kJ mol–1, respectively. The possibility is discussed that the effect of solvent polarity G et *on the exciplex formation enthalpies can be rationalized in terms of the model of correlated polarization of an exciplex and the medium.  相似文献   

13.
Thermodynamic parameters, G°, H° and TS° are reported for the formation of proton amine–hexacyanoferrate(II) complexes, in aqueous solution, at 25°C. H° were determined by the temperature dependence of formation constants and/ or by direct calorimetry in aqueous solution, at T = 25°C. Enthalpy changes for the reaction HiAi+ + Hj Fe(CN) 6 j-4 = AFe (CN)6H i+j i+j-4 (where A = methylamine, ethylenediamine, and tetraethylenepentamine) are quite low and the main contribution to the stability of these complexes arises from the entropic term, as expected for electrostatic interactions. When j = 0, the formation entropy is linearly dependent on i according to the simple equation TS° = 13.4 i kJ-mol–1.  相似文献   

14.
Summary The oxidation of MeCHO by chromium(VI) has been studied in HClO4 medium over a wide range of experimental conditions and has been found to obey the rate law;v=k[MeCHO][HCrO 4 ][H+]. The calculated H and-S values for the reaction are 30±2kJ mol–1 and 171±7J mol–1deg–1, respectively. The mechanism is discussed in terms of carbon-hydrogen bond cleavage.  相似文献   

15.
The complexation reactions between Ag+ andTl+ ions with 15-crown-5 (15C5) and phenyl-aza-15-crown-5(PhA15C5) have been studied conductometrically in 90%acetonitrile-water and 50% acetonitrile - water mixed solvents attemperatures of 293, 298, 303 and 308 K. The stability constants of theresulting 1 : 1 complexes were determined, indicating that theTl+ complexes are more stable than the Ag+complexes. The enthalpy and entropy of crown complexation reactions were determined from the temperature dependence of the complexation constants.The enthalpy and entropy changes depend on solvent composition and the T S0 o–H0 plotshows a good linear correlation, indicating the existence of entropy –enthalpy compensation in the crown complexation reactions.  相似文献   

16.
Summary G2 theory is shown to be reliable for calculating isodesmic and homodesmotic stabilization energies (ISE and HSE, respectively) of benzene. G2 calculations give HSE and ISE values of 92.5 and 269.1 kJ mol–1 (298 K), respectively. These agree well with the experimental HSE and ISE values of 90.5±7.2 and 268.7±6.3 kJ mol–1, respectively. We conclude that basis set superposition error corrections to the enthalpies of the homodesmotic or isodesmic reactions are not necessary in calculations of the stabilization energies of benzene using G2 theory. The calculated values of the enthalpies of formation of such molecules containing multiple bonds such as benzene ands-trans 1,3-butadiene, which are found from the enthalpies of isodesmic and homodesmotic reactions rather than of atomization reactions, demonstrate good performance of G2 theory. Estimates of theH f o value for benzene from the G2 calculated enthalpies of homodesmotic reaction (2) and isodesmic reaction (3) are 80.9 and 82.5 kJ mol–1 (298 K), respectively. These are very close to the experimentalH f o value of 82.9±0.3 kJ mol–1. TheH f o value ofs-trans 1,3-butadiene calculated using the G2 enthalpy of isodesmic reaction (4) is 110.5 kJ mol–1 and is in excellent agreement with the experimentalH f o value of 110.0±1.1 kJ mol–1.  相似文献   

17.
Summary The vibrational spectra of solutions have been analyzed to assess both qualitatively and quantitatively the changes in enthalpy and entropy for ion pair formation in solutions of LiNCS, Mg(NCS)2, and LiN3 in liquid ammonia, dimethylformamide, dimethylsulphoxide and acetonitrile. Contrary to predictions both the H ass and S ass terms are all positive in the cases examined, indicating that the driving force in the ion association process derives from solvent-solute restructuring, and not the energy of the interaction between the cation and anion. This characteristic of contact ion pair formation is likely to be found to be applicable over a wide range of solvents. The following specific values of the thermodynamic parameters at 298 K have been obtained: LiNCS/DMF, G=–1.3 (1) kJ mol–1, H ass =+1.8 (5) kJ mol, S ass =+10 (2) J mol–1 K–1; LiNCS/DMSO, G=+0.9 (2) kJ mol–1, H ass =+0.3 (3) kJ mol–1; Mg(NCS)2/DMF, G ass =–4.0 (3) kJ mol–1, H ass =+15 (4) kJ mol–1, S=+64 (17) kJ mol–1; LiN3/DMSO, G ass =–2.5 (3) kJ mol–1, H ass =+4.9 (9) kJ mol–1, S ass =+25 (10) J K–1 mol–1.Submitted to celebrate the 70th Birthday of Professor Viktor Gutmann, and in recognition of his considerable contributions towards the better understanding of Chemistry in the Solution Phase  相似文献   

18.
The kinetics of the solvolysis of [Co(CN)5Cl]3– have been investigated in water +2-methoxyethanol and water + diethylene glycol mixtures. Although the addition of these linear hydrophilic cosolvent molecules to water produces curvature in the variation of log(rate constant) with the reciprocal of the dielectric constant, their effect on the enthalpy and entropy of activation is minimal, unlike the effect of hydrophobic cosolvents. The application of a Gibbs energy cycle to the solvolysis in water and in the mixtures using either solvent-sorting or TATB values for the Gibbs energy of transfer of the chloride ion between water and the mixture shows that the relative stability of the emergent solvated Co(III) ion in the transition state compared to that of Co(CN)5Cl3– in the initial state increases with increasing content of cosolvent in the mixture. By comparing the effects of other cosolvents on the solvolysis, this differential increase in the relative stabilities of the two species increases with the degree of hydrophobicity of the cosolvent.List of Symbols v2 partial molar volume of the cosolvent in water + cosolvent mixtures - V 2 o molar volume of the pure cosolvent - H mix E excess enthalpy of mixing water and cosolvent - S mix E excess entropy of mixing water and cosolvent - G t o (i)n the Gibbs energy of transfer of speciesi from water into the water + cosolvent mixture excluding electrostatic contributions - k s first order rate constant for the solvolysis in water + cosolvent mixtures - D s dielectric constant of the water + cosolvent mixture - H * the enthalpy of activation for the solvolysis - S * the entropy of activation for the solvolysis - G * the Gibbs energy of activation for the solvolysis - V * the volume of activation for the solvolysis - i * speciesi in the transition state for the solvolysis - H o Hammett Acidity Function - TATB method for estimating the Gibbs energy of transfer for single ions assuming those for Ph4As+ and BPh 4 are equal  相似文献   

19.
The enthalpy changes at zero ionic strength (H°) for the ionization of water (H2O=H++OH) were determined by flow calorimetry from the heats of mixing of aqueous NaOH and HCl solutions in the temperature range 250 to 350°C. Pitzer ion-interaction models developed by other workers were used to calculate enthalpies of dilution of aqueous NaOH, HCl, and NaCl solutions for the extrapolation of H values from the conditions of the experiment to infinite dilution. Equations are derived for thermodynamic quantities (log K, H°, S°, C p ° and V°) for the ionization of water using the H° values determined in this study from 250 to 350°C and literature log K and H° values from 0 to 225°C. Smoothed values of log K, H°, S°, C p ° , and V° are presented at rounded temperatures from 0 to 350°C and at the saturation pressure of water for each temperature. The equations in the present study provide a better representation of experimental thermodynamic data from 0 to 350°C than the Marshall-Franck equation.  相似文献   

20.
The enthalpy of combustion of 3-nitroisoxazoline has been determined as H c 298.15 =–414±0.3 kcal/mole and that of 3-nitroisoxazoline N-oxide as H c 298.15 =–406.6±0.5 kcal/mole. From the values for the heats of combustion and evaporation, the standard enthalpies of formation have been calculated and the energy of the NO bond has been evaluated at 64±3 kcal/mole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号