首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study addresses the design of protein-repellent gold surfaces using hydroxyethyl- and ethyl(hydroxyethyl) cellulose (HEC and EHEC) and hydrophobically modified analogues of these polymers (HM-HEC and HM-EHEC). Adsorption behavior of the protein immunoglobulin G (IgG) onto pure gold and gold surfaces coated with cellulose polymers was investigated and described by quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and contact angle measurements (CAM). Surfaces coated with the hydrophobically modified cellulose derivatives were found to significantly outperform a reference poly(ethylene glycol) (PEG) coating, which in turn prevented 90% of non-specific protein adsorption as compared to adsorption onto pure gold. HEC and EHEC prevented around 30% and 60% of the IgG adsorption observed on pure gold, while HM-HEC and HM-EHEC were both found to completely hinder biofouling when deposited on the gold substrates. Adsorption behavior of IgG has been discussed in terms of polymer surface coverage and roughness of the applied surfaces, together with hydrophobic interactions between protein and gold, and also polymer-protein interactions.  相似文献   

2.
The adsorption properties of sensitive films formed by gold nanoparticles, dropped from solutions with different nanoparticles content are investigated using mass-sensitive (QCM) sensors. The dependence of surface adsorption capacity on nanoparticles concentration is shown. The decrease of surface concentration of nanoparticles leads to the increase of sensors sensitivity to different alcohols and water. The adsorption character of water (response amplitude and kinetics) substantially differs form that of alcohols. The sensitivity of gold nanoparticles layers to water is more then one order higher then to alcohols. The kinetics of water adsorption runs in two stages.  相似文献   

3.
Mesoporous TiO(2) nanocontainers (NCs) covered with polyelectrolyte multilayers were adsorbed on self-assembled monolayer (SAM) modified gold substrates at different values of pH and ionic strength. The adsorption process was followed in situ by means of a quartz crystal microbalance (QCM) and the morphology of the adsorbate was investigated by means of FE-SEM images taken of the substrates after each adsorption process. Deposition could be achieved if either the particles and the surface had opposite charge, or if the salt concentration was sufficiently high, reducing the repulsion between the spheres and the surface. In the latter case the adsorption kinetics could be explained in the context of the DLVO-theory. Using conditions of like charges, one has a means to control the speed of deposition by means of ionic strength. However, interparticle aggregation and cluster deposition on the surface were observed at high ionic strength. Such conditions have to be avoided to obtain a uniform deposition of separated nanocontainers on the surface.  相似文献   

4.
Aiming to understand the role of the substrate in the adsorption of carbon monoxide on gold clusters supported on metal-oxides, we have started a study of that process on two different alumina substrates: an amorphous-like fully relaxed stoichiometric (Al2O3)20 cluster and the Al terminated (0001) surface of alpha-(Al2O3) crystal. In this paper, we present first principles calculations for the adsorption of one Au atom on both alumina substrate and the adsorption of Au8 on (Al2O3)20. Then, we study the CO adsorption on the minimum energy structure of these three different gold/alumina systems. A single Au adsorbs preferably on top of an Al atom with low coordination, the binding energy being higher in the case of Au/(Al2O3)20. CO absorbs preferably on top of the Au atom, but in the case of Au/(Al2O3)20, Au forms a bridge with the Al and O substrate atoms after CO adsorption. We find other stable sites for CO adsorption on the cluster but not on the surface. This result suggests that the Au activity toward CO may be larger for the amorphous cluster than for the crystal surface substrate. For the most stable Au8/(Al2O3)20 configuration, two Au atoms bind to Al and a O atoms respectively and CO adsorbs on top of the Au which binds to the Al atom. We find other CO adsorption sites on supported Au8 which are not stable for the free Au8 cluster.  相似文献   

5.
Interactions between proteins and biomaterial surfaces correlate with many important phenomena in biological systems. Such interactions have been used to develop various artificial biomaterials and applications, in which regulation of non-specific protein adsorption has been achieved with bioinert properties. In this research, we investigated the protein adsorption behavior of polymer brushes of dendrimer self-assembled monolayers (SAMs) with other generations. The surface adsorption properties of proteins with different pI values were examined on gold substrates modified with poly(amidoamine) dendrimer SAMs. The amount of fibrinogen adsorption was greater than that of lysozyme, potentially because of the surface electric charge. However, as the generations increased, protein adsorption decreased regardless of the surface charge, suggesting that protein adsorption was also affected by density of terminal group.  相似文献   

6.
The effect of the gold particle size, temperature of the model gold catalyst, and NO pressure on the composition of the adsorption layer was studied by in situ XPS and STM methods. Adsorption of nitric oxide was carried out on gold nanoparticles with a mean size of 2?C7 nm prepared on the thin film surface of alumina. In high-vacuum conditions (P NO ?? 10?5 Pa), only atomically adsorbed nitrogen is formed on the surface of gold nanoparticles. At about 1 Pa pressure of NO and in the temperature range from 325 to 475 K, atomically adsorbed nitrogen coexists with the N2O adsorption complex. The surface concentration of the adsorbed species changes with a change in both the mean gold particle size and adsorption temperature. The saturation coverage of the surface with the nitrogen-containing complexes is observed for the sample with a mean size of gold particles of 4 nm. The surface of these samples is mainly covered with atomically adsorbed nitrogen, the saturation coverage of adsorbed nitrogen of about ??0.6 monolayer is attained at T = 473 K. The change in the composition of the adsorption layer with temperature of the catalysts agrees with the literature data on the corresponding temperature dependence of the selectivity of N2 formation observed in the catalytic reduction of NO with carbon monoxide on the Au/Al2O3 catalyst. The dependences of the composition of the adsorption layer on the mean size of Au nanoparticles (size effect) and temperature of the catalyst are explained by the sensitivity of NO adsorption to specific features of the gold surface.  相似文献   

7.
The effect of chemical heterogeneity of surfaces on the adsorption of proteins was investigated using model surfaces prepared by self-assembly of omega-functionalized alkanethiols on gold substrates. Surface plasmon resonance was used to monitor the adsorption kinetics of bovine serum albumin (BSA) and the morphology of the adsorbed BSA was imaged with tapping mode atomic force microscopy. The experiments show that the morphology of the adsorbed protein layer was altered significantly only when the surface heterogeneity was distributed in a patchwise manner on a nanometer length scale, which is commensurate with the dimension of the protein. In contrast to linear flexible polymers where the initial adsorption rate remained unchanged upon introduction of the chemical heterogeneity, the initial rate for the globular protein changed from the value observed on homogeneous surfaces and was dependent on the heterogeneous distribution of the chemical sites.  相似文献   

8.
We have constructed a dark‐field light scattering microscope using a very low‐cost digital camera to investigate the adsorption of gold nanoparticles (AuNPs) on four different substrates at various pH values. The substrates used are glass, polycarbonate (PC), poly(dimethylsiloxane) (PDMS), and poly(methyl methacrylate) (PMMA). The coverage of AuNPs on hydrophobic substrates such as PDMS is greater than that on hydrophilic substrates like glass. The adsorption and aggregation of AuNPs on a particular substrate increased upon decreasing the pH (from 9.0 to 4.0). A greater coverage percentage of AuNPs, but less aggregation, occurs on glass treated with poly(diallyldimethylammonium) (PDDA) than on bare glass. The scattering intensity increases upon increasing the number of layers of adsorbed AuNPs on glass that was treated sequentially with AuNPs and PDDA. When compared to UV‐Vis absorption, dark‐field microscope provides greater sensitivity and qualitative surface information.  相似文献   

9.
Coupled application of a version of the in-situ radiotracer ‘foil’ method and voltammetry provided information on the time-, potential-, concentration- and pH-dependent adsorption of 1-hydroxy-ethane-1,1-diphosphonic acid (HEDP) on a polycrystalline gold electrode, and on the effect of Zn2+ ions on the adsorption phenomena. Adsorption processes on the oxide-free surface of gold were observed to be potential-dependent in the potential range 0.05–1.00 V (versus RHE), while formation and irreversible accumulation of oxidation products of HEDP could be detected at E>1.00 V. The relative adsorption strength of HEDP (its dissociation and/or oxidation products) was found to be higher on an oxide-free gold surface than on an oxide-covered one. The surface excess of HEDP increased with increasing pH. Addition of Zn2+ ions to the solution exerted a substantial effect on the HEDP accumulation. Namely, significant differences in the surface coverage, as well as in the kinetics and mechanism of HEDP adsorption could be detected in the potential regions below and above E=0.2 V. Reduction of Zn(II) species at E≤0.1 V is probably coupled with the induced adsorption of HEDP on an Au electrode, leading to the formation of a polymolecular HEDP–Zn surface complex layer.  相似文献   

10.
The activities of neutral,anionic,and cationic Au(111),Au(100),and Au(310) surfaces,as well as an Au adatom on Au(111) surface towards NO adsorption have been studied by performing density functional theory calculations.It was found that the activity of gold increases as the coordination number of the gold atoms decreases,and that the cationic surfaces are generally more active than the neutral and anionic surfaces.The activity of Au surfaces towards NO adsorption is attributable to the presence of low coor...  相似文献   

11.
Nitric oxide adsorption at 300–500 K on gold particles supported on an alumina film has been investigated for the first time by in situ X-ray photoelectron spectroscopy. Two nitrogen-containing adsorption species can form on the surface of gold particles. By test experiments on NO adsorption on the stepped face (533) of a gold single crystal, these species have been identified as adsorbed nitrogen atoms (which are detected throughout the temperature range examined) and a surface complex with N2O stoichiometry (which is stable in a narrow temperature range of 325–425 K).  相似文献   

12.
The adsorption and oxidation of oxalic acid at gold electrodes were studied by in-situ infrared spectroscopy. External reflection experiments carried out with gold single-crystal electrodes were combined with internal reflection (ATR-SEIRAS) experiments with gold thin-film electrodes. These gold thin films, with a typical thickness of ca. 35 nm, were deposited on silicon substrates by argon sputtering. As previously reported for evaporated gold films, the voltammetric curves obtained in sulfuric acid solutions after electrochemical annealing show typical features related to the presence of wide bidimensional (111) domains with long-range order. The in-situ infrared data collected for solutions of pH 1 confirmed the potential-dependent adsorption of either oxalate (Au(100)) or a mixture of bioxalate and oxalate (Au(111), Au(110), and gold thin films) anions in a bidentate configuration. The better signal-to-noise ratio associated with the SEIRA effect in the case of the gold thin-film electrodes allows the observation of the carbonyl band for adsorbed bioxalate that was not detected in the external reflection experiments. Besides, additional bands are observed between 2000 and 3000 cm(-)(1) that can be tentatively related to the formation of hydrogen bonds between neighboring bioxalate anions. The intensities of these bands decrease with increasing solution pH values, disappearing for pH 3 solutions in which adsorbed oxalate anions are the predominant species. The analysis of the intensities of the nu(s)(O-C-O) and nu(C-OH) + delta(C-O-H) bands for adsorbed oxalate and bioxalate, respectively, suggests that the pK(a) for the surface equilibrium between these species is significantly lower than that for the solution equilibrium.  相似文献   

13.
In situ surface enhanced infrared absorption spectroscopy (SEIRAS) with an attenuated total reflection (ATR) configuration has been used to monitor the adsorption kinetics of bovine hemoglobin (BHb) on a Au nanoparticle (NP) film. The IR absorbance for BHb molecules on a gold nanoparticle film deposited on a Si hemispherical optical window is about 58 times higher than that on a bare Si optical window and the detection sensitivity has been improved by 3 orders of magnitude. From the IR signal as a function of adsorption time, the adsorption kinetics and thermodynamics can be explored in situ. It is found that both the electrostatic interaction and the coordination bonds between BHb residues and Au NP film surface affect the adsorption kinetics. The maximum adsorption can be obtained in solution pH 7.0 (close to the isoelectric point of the protein) due to the electrostatic interaction among proteins. In addition, the isotherm of BHb adsorption follows well the Freundlich adsorption model.  相似文献   

14.
It has been demonstrated that hydrogen adsorption has an effect on the electronic structure of gold nanoparticles. The physicochemical properties of separate gold nanoparticles have been studied under an ultrahigh vacuum scanning tunneling microscope. The structure and electronic structure of gold–hydrogen clusters were modeled by the quantum-chemical density functional theory method. Hydrogen adsorption onto gold nanoparticles 4–5 nm is size at room temperature was experimentally revealed, and the lower limit of 1.7 eV for the Au–H bond energy was determined. The interaction of hydrogen with gold leads to a considerable rearrangement of the electronic subsystem of nanoparticles. The experimentally observed effects were supported by quantum-chemical calculations. The rearrangement mechanism is related to strong correlations in the electronic subsystem.  相似文献   

15.
Here, we report on a new aspect of the adsorption of Br- on the surface of gold. The adsorption of dodecyltrimethylammonium bromide (C12TABr) from aqueous solutions onto macroporous gold particles was studied by continuous flow frontal analysis solid/liquid chromatography and flow adsorption microcalorimetry. The material balance and enthalpy balance of adsorption and the change in the solution pH were measured simultaneously. Initially, Br- is irreversibly bound to high-affinity surface sites counterbalanced by the adsorption of H+ from the aqueous phase. The surface speciation is accompanied by the formation of C12TAOH, which in turn results in a significant pH increase in the bulk solution. The net process was found to be strongly exothermic (-280 kJ.mol(-1)), which is indicative of the occurrence of chemisorption. The specific adsorption of Br- is followed by the reversible adsorption of C12TABr to produce a firmly bound monolayer in a head-to-surface arrangement (-53 kJ.mol(-1)). In a relatively narrow range of the surface coverage, various composite structures may develop on the top layer and eventually transform to full-cylindrical surface aggregates. The surface aggregation was found to be reversible, with an enthalpy change of -11 kJ.mol(-1). The importance of the specific binding of Br- to the surface of gold was confirmed by measurement of the initial adsorption of NaBr on the microparticles. The initial adsorption was found to be irreversible, with an enthalpy change of approximately -240 kJ.mol(-1). This process involved the formation of an AuBr-/H+ electric double layer at the gold/water interface, accompanied by a dramatic increase in the solution pH due to the release of a copious amount of OH- in the bulk liquid phase.  相似文献   

16.
Protein-resistant films derived from the fifth-generation poly(amidoamine) dendrimers (PAMAM G5) functionalized with oligo(ethylene glycol) (OEG) derivatives consisting of various ethylene glycol units (EG(n), n = 3, 4, and 6) were prepared on the self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) on gold substrates. The resulting films were characterized by ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy (XPS). About 35% of the peripheral amines of the dendrimers were reacted with N-hydroxysuccinimide-terminated EG(n) derivatives (NHS-EG(n)). The dendrimer films showed improved stability over octadecanethiolate SAMs on gold in hot solvents, attributed to the formation of multiple amide bonds per PAMAM unit with underlying NHS-activated MUA monolayer. The EG(n)-attached PAMAM surfaces with n = 3 reduced the adsorption of fibrinogen to approximately 20% monolayer, whereas 2-3% for n = 4 or 6. The dendrimer films with various densities of EG(n) molecules on PAMAM surfaces were prepared by immersion of the NHS-terminated MUA-functionalized gold substrates in ethanolic solutions containing PAMAM and NHS-EG(n) of various mole ratios. The density (r) of the EG(n) molecules on the PAMAM surfaces is consistent with the mole ratio (r') of NHS-EG(n)/free amine of PAMAM in solutions. The resistance to protein adsorption of the resulting surfaces is correlated with the surface density and the length of the EG chains. At their respective r, the EG(n)-modified dendrimer films resisted approximately 95% adsorption of fibrinogen on gold surfaces. Finally, the specific binding of avidin to the approximately 5% and approximately 40% biotinylated EG3 dendrimers (surface density of biotin with respect to the total number of terminal amino groups on PAMAM G5) gave rise to about 50% and 100% surface coverage by avidin, respectively.  相似文献   

17.
表面增强拉曼散射(SERS)被用于检测细菌芽孢中的一种重要的标志物吡啶2,6-二羧酸(DPA)。以聚乙烯吡咯烷酮(PVP)为粘合剂,将60 nm的金粒子组装到表面打磨光滑的金电极上,制备稳定、灵敏的SERS基底。通过不同pH值下吸附在金基底上的DPA的SERS特征,考察DPA分子吸附构型发生的变化,并分析酸根离子对其吸附的影响。结果表明:在强酸条件下,DPA在Au NPs/PVP/Au基底上的SERS信号能达到最大增强;当pH值大于DPA二级解离常数时,DPA的SERS特征逐渐减弱。在DPA中引入不同酸根盐时,后者会取代纳米金表面的柠檬酸根所占的部分位点,改变Au NPs-Au基底的SERS增强性能。3种酸根吸附性能不同,所以获得的光谱强度存在差异。  相似文献   

18.
The electron scattering cross section on the surface of thin silver and gold films induced by adsorption of atomic deuterium under conditions when a single adsorption state is formed was determined. Adsorption of atomic deuterium carried out at 78 K on sintered thin silver (gold) films deposited on Pyrex glass under ultrahigh vacuum conditions was studied measuring the resistance changes DeltaR "in situ". The adsorption runs performed at various exposures were followed by thermal desorption. This allowed establishment of a correlation between DeltaR and the uptake of the adsorbate. BET measurements were performed to determine the real area of the thin films and calculate the density of the adsorbate on their surface. It was found that in agreement with Wissmann's equation1 a linear dependence of DeltaR on the density of the adsorbate nads exists within a large interval of the population (nads < or = 1 x 10(15) D adatoms/cm2 on silver and 7 x 10(14) D adatoms/cm2 on gold) available under our experimental conditions. On the basis of this equation the electron scattering cross section Aads induced by adsorption of atomic deuterium on sintered thin silver and gold films was calculated as reaching 4.75 x 10(-16) and 4.46 x 10(-16) cm2, respectively. A small isotope effect in the electron scattering cross section for adsorption of hydrogen on silver was observed: Aads = 5.48 x 10(-16) cm2.  相似文献   

19.
The adsorption of anisole, 3,5-dimethylanisole, and 3,5-bis-(trifluoromethyl)-anisole on Pt(111) was studied theoretically and compared to the adsorption of benzene using relativistically corrected density functional theory. A cluster of 31 platinum atoms was used to simulate the surface. The three anisoles were found to be less strongly adsorbed than the parent molecule benzene, 3,5-bis-(trifluoromethyl)-anisole showing weakest adsorption, with an adsorption energy of only one-third that of benzene. The theoretical study was complemented by in situ ATR-IR spectroscopy of the adsorption of the anisole derivatives on a polycrystalline Pt film. The spectroscopic study indicated that the adsorption strength of the anisoles follows the same order as predicted by the calculations. In addition, catalytic hydrogenation tests showed that the propensity to aromatic ring hydrogenation can also be correlated to the mode and strength of adsorption of the anisoles. The degree of saturation followed the same order as the adsorption strength found by the calculations and indicated by spectroscopy. Although 3,5-dimethyl substitution on anisole resulted in only a partial loss of adsorption energy and reactivity toward ring hydrogenation as compared to anisole, the substitution by CF(3) groups led to a large loss of adsorption energy and complete loss of reactivity toward aromatic ring saturation. Along with the study of the substituent effect on the adsorption of aromatic molecules, the correlation between adsorption and propensity to saturation of aromatic substrates could be corroborated.  相似文献   

20.
The adsorption-desorption behavior of poly(vinyl imidazole), a weak polybase (pH-dependent positive charge), on a gold electrode was investigated using optical fixed-angle reflectometry. Using an instrument comprising an impinging-jet system, the hydrodynamic conditions were well defined, making it possible to study the adsorption rate. Comparison between the actual adsorption rate and that of a purely diffusion-controlled process revealed the occurrence and the change of an electrostatic barrier in the adsorption process. The surface charge of the gold electrode was varied by means of an externally applied potential. The surface charge density was evaluated by separate electrochemical impedance spectroscopy. The uptake and the adsorption rate were very sensitive to pH and electrode polarization. At pH 3, the adsorption of the fully charged polymer increased fairly regularly with cathodic polarization, whereas it remained at about 0.4 mg m(-2) in the anodic zone At pH 8, the adsorption of the uncharged polymer decreased with the negative charge of the electrode due to the more favorable adsorption of potassium ions on the charged electrode. Discrepancies in adsorption-desorption measurements taken while cycling the pH were due to an electrostatic adsorption barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号