首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-amplitude pH oscillations have been measured during the oxidation of sulfur (IV) species by the bromate ion in aqueous solution in a continuous-flow stirred tank reactor in the absence of any additional oxidizing or reducing reagent. The source of the oscillation in this simple chemical reaction is a two-way oxidation of sulfur (IV) by the bromate ion: (1) the hydrogen-ion-producing self-accelerating oxidation to sulfur (VI) (SO4(2-)), and (2) a hydrogen-ion-consuming oxidation to sulfur (V) (S2O6(2-)). In such a way, both the H+-producing and H+-consuming composite processes required for a pH oscillator take place in parallel in a reaction between two reagents in this system. A simple reaction scheme, consisting of the protonation equilibria of SO3(2-) and HSO3-, the oxidation of HSO3- and H2SO3 by BrO3- to SO4(2-), and the oxidation of H2SO3 to S2O6(2-) has successfully been used to simulate the observed dynamical behavior. Simulation with this simple scheme shows that oscillations can be calculated even if only about 1% of sulfur (IV) is oxidized to S2O6(2-) along with the main product SO4(2-). Agreement between calculated and measured dynamical behavior is found to be quite good. Increasing temperature decreases both the period length of oscillations in a CSTR and the Landolt time measured in a closed reactor. No temperature compensation of the oscillatory frequency is found in this reaction.  相似文献   

2.
Here we report on a mixed oxide system, gamma-Fe2O3 nanoparticles doped with Mn(III), where the transition from the cubic to the more stable hexagonal alpha-Fe2O3 structure is suppressed. When amorphous Fe2O3 is heated at 300 degrees C for 3 h, ferrimagnetic gamma-Fe2O3 is observed as the sole product. On the other hand, when the temperature is raised to 500 degrees C, one observes only antiferromagnetic alpha-Fe2O3 as the product. However, upon doping with 8.5 wt % Mn(III), the amorphous nanoparticles crystallized to mainly the gamma-Fe2O3 matrix after heating at 500 degrees C for 3 h, and need to be heated to >650 degrees C for the complete transition to the alpha-Fe2O3 structure to take place.  相似文献   

3.
The deviation of the NH(2) pseudo-first-order decay Arrhenius plots of the NH(2) + O(3) reaction at high ozone pressures measured by experimentalists, has been attributed to the regeneration of NH(2) radicals due to the subsequent reactions of the products of this reaction with ozone. Although these products have not yet been characterized experimentally, the radical H(2)NO has been postulated, because it can regenerate NH(2) radicals through the reactions: H(2)NO + O(3) --> NH(2) + O(2) and H(2)NO + O(3) --> HNO + OH + O(2). With the purpose of providing a reasonable explanation from a theoretical point of view to the kinetic observed behaviour of the NH(2) + O(3) system, we have carried ab initio electronic structure calculations on both H(2)NO + O(3) possible reactions. The results obtained in this article, however, predict that of both reactions proposed, only the H(2)NO + O(3) --> NH(2) + O(2) reaction would regenerate indeed NH(2) radicals, explaining thus the deviation of the NH(2) pseudo-first-order decay observed experimentally.  相似文献   

4.
In a continuous flow stirred tank reactor (CSTR), the reaction of thiourea-iodate-sulfite (TuIS) exhibits a rich variety of complex oscillations in pH. The transitions from 1(n) type oscillations to 1(3), 1(2) type and simple oscillations were observed on decreasing the flow rate gradually in small steps at 30.2 °C and 20.5 °C, respectively. The transitions from 1(n) type oscillations to 1(0)1(4), 1(0)1(3) type and simple oscillations were observed as well on increasing the temperature in small steps at a given flow rate. Based on the analogous iodate-sulfite-thiosulfate system a simple empirical rate law model is suggested to give a sound agreement between the experimental and simulated results on the complex oscillatory behaviour. A possible explanation of the emergence of the simple empirical rate law model from the mechanism of the individual reactions of the TuIS system is also discussed.  相似文献   

5.
The C2H2 + O(3P) and HCCO + O(3P) reactions are investigated using Fourier transform infrared (FTIR) emission spectroscopy. The O(3P) radicals are produced by 193 nm photolysis of an SO2 precursor or microwave discharge in O2. The HCCO radical is either formed in the first step of the C2H2 + O(3P) reaction or by 193 nm photodissociation of ethyl ethynyl ether. Vibrationally excited CO and CO2 products are observed. The microwave discharge experiment [C2H2 + O(3P)] shows a bimodal distribution of the CO(v) product, which is due to the sequential C2H2 + O(3P) and HCCO + O(3P) reactions. The vibrational distribution of CO(v) from the HCCO + O(3P) reaction also shows its own bimodal shape. The vibrational distribution of CO(v) from C2H2 + O(3P) can be characterized by a Boltzmann plot with a vibrational temperature of approximately 2400 +/- 100 K, in agreement with previous results. The CO distribution from the HCCO + O(3P) reaction, when studied under conditions to minimize other processes, shows very little contamination from other reactions, and the distribution can be characterized by a linear combination of Boltzmann plots with two vibrational temperatures: 2320 +/- 40 and 10 300 +/- 600 K. From the experimental results and previous theoretical work, the bimodal CO(v) distribution for the HCCO + O(3P) reaction suggests a sequential dissociation process of the HC(O)CO++ --> CO + HCO; HCO --> H + CO.  相似文献   

6.
The open-chain trioxide CF(3)OC(O)OOOC(O)OCF(3) is synthesised by a photochemical reaction of CF(3)C(O)OC(O)CF(3), CO and O(2) under a low-pressure mercury lamp at -40 degrees C. The isolated trioxide is a colourless solid at -40 degrees C and is characterised by IR, Raman, UV and NMR spectroscopy. The compound is thermally stable up to -30 degrees C and decomposes with a half-life of 1 min at room temperature. Between -15 and +14 degrees C the activation energy for the dissociation is 86.5 kJ mol(-1) (20.7 kcal mol(-1)). Quantum chemical calculations have been performed to support the vibrational assignment and to discuss the existence of rotamers.  相似文献   

7.
High field (800 MHz) (1)H NMR was used to monitor the two-step consecutive reaction of excess SO(3)(2-) with symmetrical bifunctional alpha,omega-dibromoalkanes with butane (DBB), hexane (DBH), octane (DBO), and decane (DBD) chains in CTAB micelles at 25 degrees C. The first-order rate constant for the first substitution step for DBB and DBH is about 5 times faster than for the second, but the kinetics for DBO and DBD were not cleanly first-order. After 40 min, the solution contained about 80% of the intermediate bromoalkanesulfonate from DBB and DBH and the remainder is alkanedisulfonate and unreacted starting material. The same reactions were carried out in homogeneous MeOH/D(2)O solutions at 50 degrees C. The rate constants for all four alpha,omega-dibromoalkanes were first-order throughout the time course of the reaction and the same within +/-10%. However, because micellar solutions are organized on the nanoscale and bring together lipophilic and hydrophilic reactants into a small reaction volume at the micellar interface, they speed this substitution reaction considerably compared to reaction in MeOH/D(2)O. The CTAB micelles also induce a significant regioselectivity in product formation by speeding the first step of the consecutive reaction more than the second. The results are consistent with the bromoalkanesulfonate intermediates having a radial orientation within the micelles with the -CH(2)SO(3)(-) group in the interfacial region and the -CH(2)Br group directed into the micellar core such that the concentration of -CH(2)Br groups in the reactive zone, i.e., the micellar interface, is significantly reduced. These results provide the first example of self-assembled surfactant system altering the relative rates of the reaction steps of a consecutive reaction and, in doing so, enhancing monosubstitution of a symmetrically disubstituted species.  相似文献   

8.
The KSCN‐H2O2‐NaOH‐Cu(II)‐catalyzed system is one of the few reactions in which chemical oscillations can be observed in batch conditions. In the present paper, this oscillating reaction was revisited in a wide range of initial concentrations of all components in batch. A mixture with a long lasting oscillation time (1 h 34 min) and a great number of oscillations (24) was found and used to investigate the effect of temperature. An Arrhenius‐type temperature dependence was observed from which an apparent “average activation energy” Eav = 76 ± 5 kJ for the overall oscillatory reaction was observed. A mechanistic study based on a modified model analyzed by the stoichiometric network analysis approach gave a satisfactory agreement between calculated and experimental oscillating behaviors and temperature dependence. The addition of the three diphenols (catechol, resorcinol, and hydroquinone) causes perturbations similar to those observed in the Briggs‐Rauscher oscillating system, i.e., an inhibition of the oscillatory regime. These inhibitory effects were described in detail, and a reasonable qualitative interpretation is given.  相似文献   

9.
The reaction of CH(3)C(O)CH(2)O(2) with HO(2) has been studied at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/acetone/methanol/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)CH(2)O, OH and O(2) () was investigated in experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The observed prompt formation of phenol under conditions when CH(3)C(O)CH(2)O(2) reacts mainly with HO(2) indicates that this reaction proceeds partially by channel , which forms OH both directly and indirectly, by virtue of secondary generation of CH(3)C(O)O(2) (from CH(3)C(O)CH(2)O) and its reaction with HO(2) (). The secondary generation of OH radicals was confirmed by the observed formation of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel ). A number of delayed sources of OH also contribute to the observed phenol formation, such that full characterisation of the system required simulations using a detailed chemical mechanism. The dependence of the phenol and CH(3)C(O)OOH yields on the initial peroxy radical precursor reagent concentration ratio, [methanol](0)/[acetone](0), were well described by the mechanism, consistent with a small but significant fraction of the reaction of CH(3)C(O)CH(2)O(2) with HO(2) proceeding via channel . This allowed a branching ratio of k(3b)/k(3) = 0.15 +/- 0.08 to be determined. The results therefore provide strong indirect evidence for the participation of the radical-forming channel of the title reaction.  相似文献   

10.
Pure, highly explosive CF(3)C(O)OOC(O)CF(3) is prepared for the first time by low-temperature reaction between CF(3)C(O)Cl and Na(2)O(2). At room temperature CF(3)C(O)OOC(O)CF(3) is stable for days in the liquid or gaseous state. The melting point is -37.5 degrees C, and the boiling point is extrapolated to 44 degrees C from the vapor pressure curve log p = -1875/T + 8.92 (p/mbar, T/K). Above room temperature the first-order unimolecular decay into C(2)F(6) + CO(2) occurs with an activation energy of 129 kJ mol(-1). CF(3)C(O)OOC(O)CF(3) is a clean source for CF(3) radicals as demonstrated by matrix-isolation experiments. The pure compound is characterized by NMR, vibrational, and UV spectroscopy. The geometric structure is determined by gas electron diffraction and quantum chemical calculations (HF, B3PW91, B3LYP, and MP2 with 6-31G basis sets). The molecule possesses syn-syn conformation (both C=O bonds synperiplanar to the O-O bond) with O-O = 1.426(10) A and dihedral angle phi(C-O-O-C) = 86.5(32) degrees. The density functional calculations reproduce the experimental structure very well.  相似文献   

11.
The thermal decomposition of peroxy acetyl nitrate (PAN) is investigated by low pressure flash thermolysis of PAN highly diluted in noble gases and subsequent isolation of the products in noble gas matrices at low temperatures and by density functional computations. The IR spectroscopically observed formation of CH3C(O)OO and H2CCO (ketene) besides NO2, CO2, and HOO implies a unimolecular decay pathway for the thermal decomposition of PAN. The major decomposition reaction of PAN is bond fission of the O-N single bond yielding the peroxy radical. The O-O bond fission pathway is a minor route. In the latter case the primary reaction products undergo secondary reactions whose products are spectroscopically identified. No evidence for rearrangement processes as the formation of methyl nitrate is observed. A detailed mapping of the reaction pathways for primary and secondary reactions using quantum chemical calculations is in good agreement with the experiment and predicts homolytic O-N and O-O bond fissions within the PAN molecule as the lowest energetic primary processes. In addition, the first IR spectroscopic characterization of two rotameric forms for the radical CH3C(O)OO is given.  相似文献   

12.
Long-lasting large amplitude periodic change of the pH is measured in an aqueous suspension of CaSO(3)-H(2)O(2)-HCO(3)(-) at 2.0-10.0 °C in a closed reactor. The amplitude can be as large as 2 pH units between pH 5 and 7. The observed phenomenon is explained and simulated by taking into account a slow dissolution of CaSO(3), which serves as a continuous supply of HSO(3)(-) for a H(+)-producing autocatalytic composite reaction between H(2)O(2) and HSO(3)(-). Protonation of HCO(3)(-) to form CO(2) in a reversible reaction provides for the necessary negative feedback in [H(+)].  相似文献   

13.
The most widely studied oscillatory chemical reactions are based on homogeneous systems, such as the BrO3--driven BZ type oscillations1, the IO3--driven BR type oscillations2, and the ClO2- driven oscillations performed in CSTR3. Recently, oscillations have also been found in some heterogeneous systems, such as the oscillations across the liquid membrane4, the oscillations on the electrode5, and the oscillations in catalysis6. The metal-catalyzed oscillatory oxidation of the organic subst…  相似文献   

14.
The ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction, the oxidation of malonic acid by acidic bromate, is the most commonly investigated chemical system for understanding spatial pattern formation. Various oscillatory behaviors were found from such as mixed-mode and simple period-doubling oscillations and chaos on both Pt electrode and Br-ISE at high flow rates to mixed-mode oscillations on Br-ISE only at Iow flow rates. The complex dynamic behaviors were qualitatively reproduced with a two-cycle coupling model proposed initially by Gy(o)rgyi and Field. This investigation offered a proper medium for studying pattern formation under complex temporal dynamics. In addition, it also shows that complex oscillations and chaos in the BZ reaction can be extended to other bromate-driven nonlinear reaction systems with different metal catalysts.  相似文献   

15.
The ferroin-catalyzed Belousov-Zhabotinsky(BZ) reaction,the oxidation of malonic acid by acidic bromate,is the most commonly investigated chemical system for understanding spatial pattern forma-tion. Various oscillatory behaviors were found from such as mixed-mode and simple period-doubling oscillations and chaos on both Pt electrode and Br-ISE at high flow rates to mixed-mode oscillations on Br-ISE only at low flow rates. The complex dynamic behaviors were qualitatively reproduced with a two-cycle coupling model proposed initially by Gy?rgyi and Field. This investigation offered a proper medium for studying pattern formation under complex temporal dynamics. In addition,it also shows that complex oscillations and chaos in the BZ reaction can be extended to other bromate-driven nonlinear reaction systems with different metal catalysts.  相似文献   

16.
This paper studies the antimony spreading and segregation that occurred along with the oxidation and solid-state reactions in the Fe2O3-Sb2O3 system. XRD, SEM, TG-DSC and particularly XPS were employed for characterizations. Sb2O4 and FeSbO4 are the only new phases detected. The formation of FeSbO4 is a more exothermic but slower reaction than oxidation of Sb2O3. A mechanical grinding of Sb2O3 and Fe2O3 leads to a significant dispersion of Sb2O3 possibly because of its low hardness. Dispersion of reference Sb2O4 in this way is negligible. During the heating of a mixture of Sb2O3 and Fe2O3 with an atomic ratio of Sb/Fe = 0.5 at 200-1000 degrees C in ambient air, the thermal spreading of Sb2O3 onto Fe2O3 increases with increasing temperature until Sb2O3 is oxidized into Sb2O4. The surface atomic ratio of Sb/Fe measured by XPS, R(Sb/Fe), reaches a maximum around 400 degrees C. The complete oxidation of Sb2O3 leads to a decrease in R(Sb/Fe) because of poorer dispersibility of Sb2O4. The formation of FeSbO4 starting at ca. 800 degrees C causes a further decrease in R(Sb/Fe), but the R(Sb/Fe) is still 3.2 times the nominal bulk Sb/Fe ratio when the Sb2O4 is completely transformed into FeSbO4.  相似文献   

17.
Dihydrogen trioxide (HOOOH) is formed nearly quantitatively in the low-temperature (-70 degrees C) methyltrioxorhenium(VII) (MTO)-catalyzed transformation of silyl hydrotrioxides (R3SiOOOH), and some acetal hydrotrioxides, in various solvents, as confirmed by 1H, and 17O NMR spectroscopy. The calculated energetics (B3LYP) for the catalytic cycle, using H3SiOOOH as a model system, is consistent with the experimentally observed activation energy (9.5 +/- 2.0 kcal/mol) and a small kinetic solvent isotope effect (kH2O/kD2O = 1.1 +/- 0.1), indicating an initial concerted reaction between the silyl hydrotrioxide and MTO in the rate-determining step. With the addition of water in the next step, the intermediate undergoes a sigma-bond metathesis reaction to break the Re-OOOH bond and form HOOOH, together with the second dihydroxy intermediate. The final step in the catalytic cycle involves a second, catalytic water that lowers the barrier to form H3SiOH and MTO.  相似文献   

18.
The gas-phase reactivities of the well-known (.)CH(2)CH(2)C(+)=O and (.)CH(2)CH(2)CH(2)C(+)=O distonic ions towards neutral pyridine were studied both experimentally (six sector hybrid mass spectrometer) and theoretically (density functional theory and M?ller-Plesset ab initio calculations). Competitively to the charge exchange and protonation processes, both radical cations react with pyridine by an initial bonding between the positive charge site of the ion and the lone electron pair of the neutral molecule. At variance with previously reported studies in which such a nucleophilic interaction was proposed to play only a transient catalytic role, the initial C-N bond is likely to remain in the observed ion-molecule reaction products. The structures of the ion-molecule reactions products were probed by collisional activation at high kinetic energy and the reaction pathways were tentatively proposed on the basis of labeling experiments and ab initio molecular orbital calculations.  相似文献   

19.
20.
Density functional calculations have been performed to describe reactions of ground-state 3d transition metal atoms (Sc-Ni) with N(2)O and NO(2) molecules. From the analysis of the calculated reaction surfaces, a general reaction mechanism evolved. The reactions are initiated by electron transfer from metal to the oxidant molecule, which weakens the N-O bond and facilitates an O(-)((2)P) abstraction. 4s-3d hybridization taking place in the metal electronic structure plays an essential role in the net 4s(beta) electron transfer from the metal atom to the nitrogen-oxide molecule. These key steps contribute to connect the reactant and product channels on a single potential energy surface. The calculations revealed that reaction with NO(2) yields stable oxo-nitrosyl insertion products, and their equilibrium structural properties can be understood by inspecting the 4pi* metal-oxide orbital occupancies. Correlation is obtained between the metal 3d ionization energies and the reaction rates as well as activation energies. This correlation provides additional support for the reaction mechanism called electron-transfer-assisted oxygen abstraction. This novel mechanism exhibits the basic features of the simple electron transfer and direct abstraction kinetic models and sheds new light on the so-called resonance interaction model as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号