首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the observation of individual steps taken by motor proteins in living cells by following movements of endocytic vesicles that contain quantum dots (QDs) with a fast camera. The brightness and photostability of quantum dots allow us to record motor displacement traces with 300 micros time resolution and 1.5 nm spatial precision. We observed individual 8 nm steps in active transport toward both the microtubule plus- and minus-ends, the directions of kinesin and dynein movements, respectively. In addition, we clearly resolved abrupt 16 nm steps in the plus-end direction and often consecutive 16 nm and occasional 24 nm steps in minus-end directed movements. This work demonstrates the ability of the QD assay to probe the operation of motor proteins at the molecular level in living cells under physiological conditions.  相似文献   

2.
Protein microarrays and quantum dot probes for early cancer detection   总被引:3,自引:0,他引:3  
We describe here a novel approach for detection of cancer markers using quantum dot protein microarrays. Both relatively new technologies; quantum dots and protein microarrays, offer very unique features that together allow detection of cancer markers in biological specimens (serum, plasma, body fluids) at pg/ml concentration. Quantum dots offer remarkable photostability and brightness. They do not exhibit photobleaching common to organic fluorophores. Moreover, the high emission amplitude for QDs results in a marked improvement in the signal to noise ratio of the final image. Protein microarrays allow highly parallel quantitation of specific proteins in a rapid, low-cost and low sample volume format. Furthermore the multiplexed assay enables detection of many proteins at once in one sample, making it a powerful tool for biomarker analysis and early cancer diagnostics.

In a series of multiplexing experiments we investigated ability of the platform to detect six different cytokines in protein solution. We were able to detect TNF-, IL-8, IL-6, MIP-1β, IL-13 and IL-1β down to picomolar concentration, demonstrating high sensitivity of the investigated detection system.

We have also constructed and investigated two different models of quantum dot probes. One by conjugation of nanocrystals to antibody specific to the selected marker—IL-10, and the second by use of streptavidin coated quantum dots and biotinylated detector antibody. Comparison of those two models showed better performance of streptavidin QD–biotinylated detector antibody model. Data quantitated using custom designed computer program (CDAS) show that proposed methodology allows monitoring of changes in biomarker concentration in physiological range.  相似文献   


3.
Single-molecule localization microscopy (SMLM) has allowed the observation of various molecular structures in cells beyond the diffraction limit using organic dyes. In principle, the SMLM resolution depends on the precision of photoswitching fluorophore localization, which is inversely correlated with the square root of the number of photons released from the individual fluorophores. Thus, increasing the photon number by using highly bright fluorophores, such as quantum dots (QDs), can theoretically fundamentally overcome the current resolution limit of SMLM. However, the use of QDs in SMLM has been challenging because QDs have no photoswitching property, which is essential for SMLM, and they exhibit nonspecificity and multivalency, which complicate their use in fluorescence imaging. Here, we present a method to utilize QDs in SMLM to surpass the resolution limit of the current SMLM utilizing organic dyes. We confer monovalency, specificity, and photoswitchability on QDs by steric exclusion via passivation and ligand exchange with ptDNA, PEG, and casein as well as by DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) via automatic thermally driven hybridization between target-bound docking and dye-bound complementary imager strands. QDs are made monovalent and photoswitchable to enable SMLM and show substantially better photophysical properties than Cy3, with higher fluorescence intensity and an improved resolution factor. QD-PAINT displays improved spatial resolution with a narrower full width at half maximum (FWHM) than DNA-PAINT with Cy3. In summary, QD-PAINT shows great promise as a next-generation SMLM method for overcoming the limited resolution of the current SMLM.Subject terms: Fluorescence imaging, Quantum dots, Oligonucleotide probes, Fluorescent dyes, Super-resolution microscopy  相似文献   

4.
We studied surface plasmon-coupled emission (SPCE) of semiconductor quantum dots (QDs). These QDs are water-soluble ZnS-capped CdSe nanoparticles stabilized using lysine cross-linked mercaptoundecanoic acid. The QDs were spin-coated from 0.75% PVA solution on a glass slide covered with 50 nm of silver and a 5-nm protective SiO(2) layer. Excited QDs induced surface plasmons in a thin silver layer. Surface plasmons emitted a hollow cone of radiation into an attached hemispherical glass prism at a narrow angle of 48.5 degrees. This directional radiation (SPCE) preserves the spectral properties of QD emission and is highly p-polarized irrespective of the excitation polarization. The SPCE spectrum depends on the observation angle because of the intrinsic dispersive properties of SPCE phenomenon. The remarkable photostability can make QDs superior to organic fluorophores when long exposure to the intense excitation is needed. The nanosize QDs also introduce a roughness near the metal layer, which results in a many-fold increase of the coupling of the incident light to the surface plasmons. This scattered incident illumination transformed into directional, polarized radiation can be used simultaneously with SPCE to develop devices based on both quantum dot emission and light scattered from surface plasmons on a rough surface.  相似文献   

5.
Semiconductor quantum dots (QDs) as a kind of nonisotopic biological labeling material have many unique fluorescent properties relative to conventional organic dyes and fluorescent proteins, such as composition- and size-dependent absorption and emission, a broad absorption spectrum, photostability, and single-dot sensitivity. These properties make them a promising stable and sensitive label, which can be used for long-term fluorescent tracking and subcellular location of genes and proteins. Here, a simple approach for the construction of QD-labeled DNA probes was developed by attaching thiol-ssDNA to QDs via a metal-thiol bond. The as-prepared QD-labeled DNA probes had high dispersivity, bioactivity, and specificity for hybridization. Based on such a kind of probe with a sequence complementary to multiple clone sites in plasmid pUC18, fluorescence in situ hybridization of the tiny bacterium Escherichia coli has been realized for the first time.  相似文献   

6.
荧光团杂化纳米SiO2微球作为生物标记探针的应用研究   总被引:4,自引:0,他引:4  
近年来 ,无机发光量子点[1,2 ] 、荧光纳米乳液微球[3 ,4 ] 及发光团掺杂 Si O2 纳米粒子[5] 等纳米荧光探针的出现 ,为生物标记提供了新的发展领域 .将有机染料以共价方式包埋在 Si O2 中所得的复合材料具有独特的光学性质 ,然而其在生物标记方面的应用并未得到重视[6 ,7] .本实验通过控制荧光团修饰的硅烷前体在反相胶束体系中的水解缩合 ,合成了用于生物染色和诊断的高灵敏度、高稳定性的新型荧光团杂化纳米 Si O2 微球 ( NFHS微球 ) .在 NFHS微球中 ,荧光团以共价方式地均匀分散在 Si O2 网络结构中 ,避免了与外界体系中溶解氧的…  相似文献   

7.
Quantum dots (QDs) have been increasingly used in biolabeling recently as their advantages over molecular fluorophores have become clear. For bioapplications QDs must be water-soluble and buffer stable, making their synthesis challenging and time-consuming. A simple aqueous synthesis of silica-capped, highly fluorescent CdTe quantum dots has been developed. CdTe QDs are advantageous as the emission can be tuned to the near-infrared where tissue absorption is at a minimum, while the silica shell can prevent the leakage of toxic Cd(2+) and provide a surface for easy conjugation to biomolecules such as proteins. The presence of a silica shell of 2-5 nm in thickness has been confirmed by transmission electron microscopy and atomic force microscopy measurements. Photoluminescence studies show that the silica shell results in greatly increased photostability in Tris-borate-ethylenediaminetetraacetate and phosphate-buffered saline buffers. To further improve their biocompatibility, the silica-capped QDs have been functionalized with poly(ethylene glycol) and thiol-terminated biolinkers. Through the use of these linkers, antibody proteins were successfully conjugated as confirmed by agarose gel electrophoresis. Streptavidin-maleimide and biotinylated polystyrene microbeads confirmed the bioactivity and conjugation specificity of the thiolated QDs. These functionalized, silica-capped QDs are ideal labels, easily synthesized, robust, safe, and readily conjugated to biomolecules while maintaining bioactivity. They are potentially useful for a number of applications in biolabeling and imaging.  相似文献   

8.
In the last couple of years, carbon dots have emerged as a new novel luminescent particle for applications in fluorescence and microscopy in some ways analogous to quantum dots and silicon nanocrystals/particles. As with any fluorescent label or tag, absolute fluorescence intensity, brightness, and particle photostability are a primary concern. In this communication we subsequently show that similar to classical fluorophores, carbon dots located in the near-field, near to Plasmon supporting materials, show enhanced intensities and improved photostabilities.  相似文献   

9.
The effect of one and two monolayers of ZnS shells on the photostability of CdTe quantum dots (QDs) in aqueous and nonaqueous media has been studied by monitoring the fluorescence behavior of the QDs under ensemble and single‐molecule conditions. ZnS capping of the CdTe QDs leads to significant enhancement of the fluorescence brightness of these QDs. Considerable enhancement of the photostability of the shell‐protected QDs, including the suppression of photoactivation, is also observed. Fluorescence correlation spectroscopy measurements reveal an increase in the number of particles undergoing reversible fluorescent on–off transitions in the volume under observation with increasing excitation power; this effect is found to be more pronounced in the case of core‐only QDs than for core–shell QDs.  相似文献   

10.
水溶性量子点荧光探针用于胃癌细胞相关抗原CA242的检测   总被引:5,自引:0,他引:5  
基于量子点荧光探针对胃癌细胞相关抗原CA242进行了检测。首先在水溶液中直接合成性能优良的量子点荧光纳米颗粒,并在其表面成功修饰了羊抗小鼠IgG和聚乙二醇,制得功能化的水溶性量子点荧光探针,并利用探针对胃癌细胞相关抗原CA242进行检测,进一步与传统的基于荧光染料标记的免疫荧光分析方法进行了比较。实验结果表明:该功能化的探针能够有效地识别胃癌细胞相关抗原CA242,并且在光稳定性和灵敏度方面都较传统的基于荧光染料标记的免疫荧光分析方法有明显的改善,从而为CA242的相关检测以及胃癌的诊断与愈后判断提供了新的方法。  相似文献   

11.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co-doped carbon dots (F,N-doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N-doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue-shift of the fluorescence emission from 586 nm to 550 nm. F,N-doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N-doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure-triggered aggregation-induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high-pressure conditions and enhances their anti-photobleaching.  相似文献   

12.
Ke Y  Kailasa SK  Wu HF  Chen ZY 《Talanta》2010,83(1):178-184
CdS quantum dots (∼5 nm) are used as multifunctional nanoprobes as an effective matrix for large proteins, peptides and as affinity probes for the enrichment of tryptic digest proteins (lysozyme, myoglobin and cytochrome c) in laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS). The use of CdS quantum dots (CdS QDs) as the matrix allows acquisition of high resolution LDI mass spectra for large proteins (5000-80,000 Da). The enhancement of mass resolution is especially notable for large proteins such as BSA, HSA and transferrin (34-49 times) when compared with those obtained by using SA as the matrix. This technique demonstrates the potentiality of LDI-TOF-MS as an appropriate analytical tool for the analysis of high-molecular-weight biomolecules with high mass resolution. In addition, CdS QDs are also used as matrices for background-free detection of small biomolecules (peptides) and as affinity probes for the enrichment of tryptic digest proteins in LDI-TOF-MS.  相似文献   

13.
The emerging nanomaterial, quantum dots or QDs, offers numerous potential applications in the biological area. As cell labeling probes, QDs become now an alternative of existing organic fluorescent dyes and fluorescent proteins. In this short review, we cover typical and successful applications of QDs as fluorescent probes in cell labeling and genomic diagnosis. As a future important application, biomolecular detection at a single molecule level utilizing QDs is also discussed.  相似文献   

14.
《中国化学快报》2022,33(12):5042-5046
The need for temporal resolution and long-term stability in super-resolution fluorescence imaging has motivated research to improve the photostability of fluorescent probes. Due to the inevitable photobleaching of fluorophores, it is difficult to obtain long-term super-resolution imaging regardless of the self-healing strategy of introducing peroxide scavengers or the strategy of fluorophore structure modification to suppress TICT formation. The buffered fluorogenic probe uses the intact probes in the buffer pool to continuously replace the photobleached ones in the target, which greatly improves the photostability and enables stable dynamic super-resolution imaging for a long time. But the buffering capacity comes at the expense of reducing the number of fluorescent probes in targets, resulting in low staining fluorescence intensity. In this paper, we selected BODIPY 493, a lipid droplet probe with high fluorescence brightness, to explore the dynamic process of lipid droplet staining of this probe in cells. We found that BODIPY 493 only needs very low laser power for lipid droplet imaging due to the high molecular accumulation in lipid droplets and the high brightness, and the spatiotemporal resolution is greatly improved. More importantly, we found that BODIPY 493 also has a certain buffering capacity, which enables BODIPY 493 to be used for super-resolution imaging of lipid droplet dynamics. This work reminds researchers to coordinate the buffering capacity and brightness of fluorogenic probes.  相似文献   

15.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co‐doped carbon dots (F,N‐doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N‐doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue‐shift of the fluorescence emission from 586 nm to 550 nm. F,N‐doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N‐doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure‐triggered aggregation‐induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high‐pressure conditions and enhances their anti‐photobleaching.  相似文献   

16.
直接合成性能优良的水溶性CdTe量子点,然后在其表面成功修饰花生凝集素,经过凝胶柱的分离纯化获得功能化的量子点荧光探针.基于T抗原选择性与花生凝集素(PNA)结合的特性,利用该探针对肠癌中高表达的T抗原进行检测,且与传统的荧光染料标记的免疫荧光分析进行了比较.实验结果表明:该功能化的荧光探针能够有效地识别肠癌的相关T抗原,从而为T抗原的检测以及肠癌的临床诊断与愈后判断提供了一种新的方法.  相似文献   

17.
The amphiphilic stearyl methacrylate/methylacrylic acid copolymers (PSMs) were used as phase transfer reagents to convert CdSe/ZnS core-shell quantum dots (QDs) in chloroform to water-soluble PSMs-coated quantum dots (PSM-QDs). The optical properties and stability of PSM-QDs were influenced by the hydrophobic moiety ratios of PSMs, the PSM/QDs mass/volume ratio and the reaction time. The resulting PSM-QDs on optimum reaction conditions retained 60% of the photoluminescence value of the original CdSe/ZnS QDs in chloroform. The carboxylate-based PSM-QDs survived UV irradiation in air for at least 15 days. Upon UV irradiation, the PSM-QDs became about 2 times brighter than the original CdSe/ZnS QDs in chloroform, and the UV-brightened PL can retain the brightness for at least several months. Experimental results further confirmed the stability of PSM-QDs against strong acid, photochemical and thermal treatments. In addition to good performance of PSM-QDs, the synthesis of PSM and the corresponding water-soluble QDs is relatively simple.  相似文献   

18.
荧光量子点及其在生物检测中的应用   总被引:1,自引:0,他引:1  
量子点(QDs)是一种零维的半导体纳米晶体,与传统的有机染料相比,具有独特的光学特征。由于它们具有激发光谱宽、发射光谱窄、发射波长精确可调、量子产率高和荧光稳定性好等特点,作为新一代的生物荧光探针,已被广泛应用于生物检测。本文介绍了QDs的基本概念和性质,探讨了QDs的制备方法及表面修饰,对其毒性也作了简要分析,提供了QDs在荧光免疫分析、生物芯片、生物传感器及体内成像等方面的应用实例。随着技术发展的不断进展,QDs在生物分析领域有着更为广泛的潜在的应用前景。  相似文献   

19.
Positron emission tomography (PET)–fluorescence imaging is an emerging field of multimodality imaging seeking to attain synergy between the two techniques. The probes employed in PET–fluorescence imaging incorporate both a fluorophore and radioisotope which enable complementary information to be obtained from both imaging techniques via the administration of a single agent. Fluorine-18 is the most commonly used radioisotope in PET imaging and consequently many novel attempts to radiofluorinate various fluorophores have transpired over the past decade. In this Minireview, the most relevant fluorine-18 labelled PET–fluorescence probes have been classified into four groups as per the implemented fluorophore: 1) boron-dipyrromethene (BODIPY) dyes, 2) cyanine dyes, 3) alternative organic fluorophores and 4) organometallics, such as quantum dots (QDs) and rhenium complexes. The biological, radiochemical and photophysical properties of each probe have been systematically compared to aid future endeavours in PET–fluorescence chemistry.  相似文献   

20.
量子点具有优异的光电性能,聚合物具有性质稳定、质轻、可加工性好等优点;将聚合物和量子点复合可综合两者的优点,同时还可使量子点的稳定性得以大幅度提高。得到的聚合物/量子点纳米复合材料应用领域广;其制备方法主要有简单易操作的直接分散法、在聚合物中原位生成量子点的原位生成法、在有量子点存在的聚合场所引发有机单体聚合的原位聚合法、层-层组装法以及在量子点表面直接修饰聚合物的表面直接修饰法。本文就这些制备方法进行了概要综述,并对各种方法的特点进行了总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号