首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum oxide (Al2O3) and chromium oxide (Cr2O3) nanoparticles were synthesized by thermolysis of metal-organic frameworks (MOFs). Further O2 plasma treatment is required to obtain high crystalline quality metal oxides. The composition and morphology of metal oxide nanoparticles were confirmed by powder X-ray diffraction and scanning electron microscopy characterization, respectively. The quality of synthesized metal oxides was also examined by observing the surface-enhanced Raman scattering (SERS) spectra of methyl orange adsorbed on Al2O3 and Cr2O3. The observed SERS effect can be ascribed to charge-transfer (CT) resonance effect between methyl orange and metal oxide surfaces. UV–vis absorption spectra and DFT calculations of metal oxide- methyl orange complexes have confirmed that the observed SRS effect is due to CT resonance between the metal oxide nanoparticles and the adsorbed methyl orange molecules.  相似文献   

2.
A research effort is undertaken to understand the mechanism of metal release from, e.g., inhaled metal particles or metal implants in the presence of proteins. The effect of protein adsorption on the metal release process from oxidized chromium metal surfaces and stainless steel surfaces was therefore examined by quartz crystal microbalance with energy dissipation monitoring (QCM-D) and graphite furnace atomic absorption spectroscopy (GFAAS). Differently charged and sized proteins, relevant for the inhalation and dermal exposure route were chosen including human and bovine serum albumin (HSA, BSA), mucin (BSM), and lysozyme (LYS). The results show that all proteins have high affinities for chromium and stainless steel (AISI 316) when deposited from solutions at pH 4 and at pH 7.4 where the protein adsorbed amount was very similar. Adsorption of albumin and mucin was substantially higher at pH 4 compared to pH 7.4 with approximately monolayer coverage at pH 7.4, whereas lysozyme adsorbed in multilayers at both investigated pH. The protein-surface interaction was strong since proteins were irreversibly adsorbed with respect to rinsing. Due to the passive nature of chromium and stainless steel (AISI 316) surfaces, very low metal release concentrations from the QCM metal surfaces in the presence of proteins were obtained on the time scale of the adsorption experiment. Therefore, metal release studies from massive metal sheets in contact with protein solutions were carried out in parallel. The presence of proteins increased the extent of metals released for chromium metal and stainless steel grades of different microstructure and alloy content, all with passive chromium(III)-rich surface oxides, such as QCM (AISI 316), ferritic (AISI 430), austentic (AISI 304, 316L), and duplex (LDX 2205).  相似文献   

3.
This work explores the opportunity to substantially reduce the cost of hydrogen evolution reaction (HER) catalysts by supporting monolayer (ML) amounts of precious metals on transition metal carbide substrates. The metal component includes platinum (Pt), palladium (Pd), and gold (Au); the low-cost carbide substrate includes tungsten carbides (WC and W(2)C) and molybdenum carbide (Mo(2)C). As a platform for these studies, single-phase carbide thin films with well-characterized surfaces have been synthesized, allowing for a direct comparison of the intrinsic HER activity of bare and Pt-modified carbide surfaces. It is found that WC and W(2)C are both excellent cathode support materials for ML Pt, exhibiting HER activities that are comparable to bulk Pt while displaying stable HER activity during chronopotentiometric HER measurements. The findings of excellent stability and HER activity of the ML Pt-WC and Pt-W(2)C surfaces may be explained by the similar bulk electronic properties of tungsten carbides to Pt, as is supported by density functional theory calculations. These results are further extended to other metal overlayers (Pd and Au) and supports (Mo(2)C), which demonstrate that the metal ML-supported transition metal carbide surfaces exhibit HER activity that is consistent with the well-known volcano relationship between activity and hydrogen binding energy. This work highlights the potential of using carbide materials to reduce the costs of hydrogen production from water electrolysis by serving as stable, low-cost supports for ML amounts of precious metals.  相似文献   

4.
We have investigated the initial stages of vacuum-deposited sexithiophene (alpha-6T) adlayer formation on Au(111) vicinal surfaces at room temperature. The in situ scanning tunneling microscopy (STM) and photoemission spectroscopy (PES) reveal a step edge-driven growth of alpha-6T on the Au(111) vicinal surfaces that first leads to the formation of an ordered monolayer, comprising two phases with the molecular major axes aligned along the step edges. The monolayer formation is then followed by the appearance of a single-phase 2D superstructure at a two-monolayer coverage. The results highlight the potential of using vicinal metal surfaces as templates for generating organized organic nanostructures over macroscopic areas for applications in organic electronics and moletronics.  相似文献   

5.
The three kinds of monomer films on metal surfaces were deposited by adsorption from a solution of 6-polymerizable substituents-1,3,5-triazine-2,4-dithiol monosodium salts (RTDN); the polymerizable substituents such as cis-9-octadecenylamino, di(cis-9-octadecenyl)amino, and p-vinylbenzyl(cis-9-octadecenyl)amino groups were selected in view of the polymerization activity of unsaturated groups in the substituents and the packing degree of monomer molecules. The monomer films were estimated to consist of mainly 6-substituents-1,3,5,-triazine-2,4-dithione (3H, 5H) and to be multimolecular layers that are considerably cross-packed and ordered. The monomer films on metal surfaces were polymerizable under a UV light irradiation in air atmosphere to give polymer films. In the photopolymerization, azobis(isobutyronitrile) (AIBN) was very effective for increasing the monomer conversion and the polymerization rate. The optimum concentration of AIBN in monomer films was very small, about 0.025 mol %. The monomer conversion was influenced by the kind of monomers, namely, the polymerization activity and the packing degree. The effect of the packing degree was especially remarkable. The monomer conversion decreased with an increase in the thickness of monomer films. This is because the polymerization was initiated by oxygen and AIBN, which were diffused into the inner of monomer films. The possibility of polymerization of the unsaturated groups and the thione groups in monomer molecules under UV light irradiation is discussed.  相似文献   

6.
Su L  Sen D  Yu HZ 《The Analyst》2006,131(2):317-322
We describe a simple electrochemical protocol for studying the ion-exchange binding of non-electroactive ions, specifically mono- and divalent metal cations of biological relevance (Mg(2+), Ca(2+), and K(+)), to DNA-modified surfaces. After incubation in a dilute solution of multiply charged transition metal complex (5.0 microM [Ru(NH(3))(6)]Cl(3)), gold electrodes modified with thiolate-DNA monolayers respond to the presence of these non-electroactive metal cations by producing significant changes in the cyclic voltammograms (i.e., decrease of the integrated charge and shift of formal potential) of the surface-bound redox complex ([Ru(NH(3))(6)](3+)). The divalent cations (particularly Mg(2+)) can be detected at very low concentrations (<10 microM), while the on-set value for K(+) is substantially higher (50 mM). The equilibrium binding constants for Mg(2+) and Ca(2+) to DNA-modified surfaces were calculated.  相似文献   

7.
In vacuum, the bare zigzag (zz) edge of graphene is reconstructed into a line of pentagon-heptagon pairs, while the pristine armchair (ac) edge is retained. Our first-principle explorations of graphene edges on three metal surfaces [Cu(111), Co(111), and Ni(111)] indicate an opposite tendency, that is, the pristine zz edge is energetically favorable and the reconstructed ac edge with dangling C atoms is highly stable on Co(111) and Ni(111) surfaces. Insightful analysis shows that passivation of the graphene edge by metal surfaces is responsible for the dramatic differences. Beyond this, the unique edge configuration has a significant impact on the graphene CVD growth behavior.  相似文献   

8.
The potential contribution of chemical bonds formed between bacterial cells and metal surfaces during biofilm initiation has received little attention. Previous work has suggested that bacterial siderophores may play a role in bacterial adhesion to metals. It has now been shown using in situ ATR-IR spectroscopy that enterobactin, a catecholate siderophore secreted by Escherichia coli, forms covalent bonds with particle films of titanium dioxide, boehmite (AlOOH), and chromium oxide-hydroxide which model the surfaces of metals of significance in medical and industrial settings. Adsorption of enterobactin to the metal oxides occurred through the 2,3-dihydroxybenzoyl moieties, with the trilactone macrocycle having little involvement. Vibrational modes of the 2,3-dihydroxybenzoyl moiety of enterobactin, adsorbed to TiO(2), were assigned by comparing the observed IR spectra with those calculated by the density functional method. Comparison of the observed adsorbate IR spectrum with the calculated spectra of catecholate-type [H(2)NCOC(6)H(3)O(2)Ti(OH)(4)](2-) and salicylate-type [H(2)NCOC(6)H(3)O(2)HTi(OH)(4)](2-) surface complexes indicated that the catecholate type is dominant. Analysis of the spectra for enterobactin in solution and that adsorbed to TiO(2) revealed that the amide of the 2,3-dihydroxybenzoylserine group reorientates during coordination to surface Ti(IV) ions. Investigation into the pH dependence of enterobactin adsorption to TiO(2) surfaces showed that all 2,3-dihydroxybenzoyl groups are involved. Infrared absorption bands attributed to adsorbed enterobactin were also strongly evident for E. coli cells attached to TiO(2) particle films. These studies give evidence of enterobactin-metal bond formation and further suggest the generality of siderophore involvement in bacterial biofilm initiation on metal surfaces.  相似文献   

9.
Biomimetic coatings offer exciting options to modulate the biocompatibility of biomaterials. The challenge is to create surfaces that undergo specific interactions with cells without promoting nonspecific fouling. This work reports an innovative approach toward biomimetic surfaces based on the covalent immobilization of a carboxylate terminated PEGylated hyaluronan (HA-PEG) onto plasma functionalized NiTi alloy surfaces. The metal substrates were aminated via two different plasma functionalization processes. Hyaluronan, a natural glycosaminoglycan and the major constituent of the extracellular matrix, was grafted to the substrates by reaction of the surface amines with the carboxylic acid terminated PEG spacer using carbodiimide chemistry. The surface modification was monitored at each step by X-ray photoelectron spectroscopy (XPS). HA-immobilized surfaces displayed increased hydrophilicity and reduced fouling, compared to bare surfaces, when exposed to human platelets (PLT) in an in vitro assay with radiolabeled platelets (204.1 +/- 123.8 x 10 (3) PLT/cm (2) vs 538.5 +/- 100.5 x 10 (3) PLT/cm (2) for bare metal, p < 0.05). Using a robust plasma patterning technique, microstructured hyaluronan surfaces were successfully created as demonstrated by XPS chemical imaging. The bioactive surfaces described present unique features, which result from the synergy between the intrinsic biological properties of hyaluronan and the chemical composition and morphology of the polymer layer immobilized on a metal surface.  相似文献   

10.
Nonmetallic impurities segregated onto metal surfaces are able to drastically decrease the chemical reactivity of metals. In the present paper, effects of bulk impurities on the reactivity of metallic surfaces were investigated in a wide temperature range on an example of the sticking of hydrogen molecules and atoms to Nb [polycrystalline, with mainly (100)] containing solute oxygen. At all the investigated surface temperatures, T(S) (300-1400 K), we found the bulk oxygen concentration C(O) to have a strong effect on the integral probability, alpha(H(2) ), of dissociative sticking of H(2) molecules followed by hydrogen solution in the metal lattice: alpha(H(2) ) monotonically decreased by orders of magnitude with increasing C(O) from 0.03 to 1.5 at. %. The sticking coefficient alpha(H(2) ) was found to depend on T(S) but not on the gas temperature. The effect of C(O) on alpha(H(2) ) is explained by the presence of oxygen-free sites (holes in coverage) serving as active centers of the surface reaction in the oxygen monolayer upon Nb. In contrast to H(2) molecules, H atoms were found to stick to, and be dissolved in, oxygen-covered Nb with a probability comparable to 1, depending neither on C(O) nor on T(S). This proves that, unlike H(2) molecules, H atoms do stick to be dissolved mainly through regular surface sites covered by oxygen and not through the holes in coverage.  相似文献   

11.
Experimental and theoretical investigations bearing on the question of the wettability, by water, of clean oxygen-free metal surfaces are reviewed. Results on gold, silver, and copper are discussed in terms of surface cleanliness, surface structure, and extent of dispersion (London) force interaction. It is concluded that clean solid metal surfaces are hydrophilic. They will yield a zero degree contact angle when prepared in the amorphous state and possibly in the perfect crystalline state as well. These results do not necessarily preclude the possibility that physical interaction at the metal-water interface consists solely of dispersion forces.  相似文献   

12.
In this paper, we demonstrate the first use of a catecholic initiator for surface-initiated polymerization (SIP) from metal surfaces to create antifouling polymer coatings. A new bifunctional initiator inspired by mussel adhesive proteins was synthesized, which strongly adsorbs to Ti and 316L stainless steel (SS) substrates, providing an anchor for surface immobilization of grafted polymers. Surface-initiated atom transfer radical polymerization (SI-ATRP) was performed through the adsorbed biomimetic initiator to polymerize methyl methacrylate macromonomers with oligo(ethylene glycol) (OEG) side chains. X-ray photoelectron spectroscopy, surface FT-IR, and contact angle analysis confirmed the sequential grafting of initiator and polymer, and ellipsometry indicated the formation of polymer coatings of up to 100 nm thickness. Cell adhesion experiments performed with 3T3-Swiss albino fibroblasts showed substantially reduced cell adhesion onto polymer grafted Ti and 316L SS substrates as compared to the unmodified metals. Moreover, micropatterning of grafted polymer coatings on Ti surfaces was demonstrated by combining SI-ATRP and molecular assembly patterning by lift-off (MAPL), creating cell-adhesive and cell-resistant regions for potential use as cell arrays. Due to the ability of catechols to bind to a large variety of inorganic surfaces, this biomimetic anchoring strategy is expected to be a highly versatile tool for polymer thin film surface modification for biomedical and other applications.  相似文献   

13.
14.
In organics-based (opto)electronic devices, the interface dipoles formed at the organic/metal interfaces play a key role in determining the barrier for charge (hole or electron) injection between the metal electrodes and the active organic layers. The origin of this dipole is rationalized here from the results of a joint experimental and theoretical study based on the interaction between acrylonitrile, a pi-conjugated molecule, and transition metal surfaces (Cu, Ni, and Fe). The adsorption of acrylonitrile on these surfaces is investigated experimentally by photoelectron spectroscopies, while quantum mechanical methods based on density functional theory are used to study the systems theoretically. It appears that the interface dipole formed at an organic/metal interface can be divided into two contributions: (i) the first corresponds to the "chemical" dipole induced by a partial charge transfer between the organic layers and the metal upon chemisorption of the organic molecules on the metal surface, and (ii) the second relates to the change in metal surface dipole because of the modification of the metal electron density tail that is induced by the presence of the adsorbed organic molecules. Our analysis shows that the charge injection barrier in devices can be tuned by modulating various parameters: the chemical potential of the bare metal (given by its work function), the metal surface dipole, and the ionization potential and electron affinity of the organic layer.  相似文献   

15.
《Progress in Surface Science》2001,67(1-8):139-154
The ability for bivalent charge transfer (CT) during hydrogen adsorption on transition metal surfaces and in the course of transition metal hydride formation is discussed. The change of the dipole moment of hydrogen adatoms, caused by transition from a strongly bound adsorption state to a weakly bound state, is demonstrated. The possibility of the CT reversion between the hydrogen adsorbate and the transition metal adsorbent, caused by a change of the surface structure, is described. The CT within the adsorbate, corresponding to the distinguished steps of the process of transition metal hydride formation, is shown.  相似文献   

16.
The catalytic activity of platinum surfaces towards methanol electrooxidation can be modified by the deposition of a second metal using different methodologies. There is little information about the catalytic performance of polycrystalline platinum modified by silver and mercury adatoms using spontaneous and electrochemical deposition methods. Cyclic voltammetrics have been performed to compare the current vs potential profiles of modified platinum surfaces in acid solution at room temperature. The inhibition of the hydrogen adatom voltammetric profile by foreign metal adatoms on platinum was used to calculate the degree of surface coverage by the metal. Poisoning effects were checked by anodic stripping experiments of methanol residues on the modified platinum surfaces at adsorption potentials in the hydrogen electrosorption region using a micro flux cell. Methanol solution oxidation was also evaluated at slow scan rates of up to 0.8 vs reversible hydrogen electrode (RHE) on the platinum-modified surfaces. The comparison between the amounts of carbon-monoxide-type residues and the solution oxidation of methanol was analysed to check for their utility as catalytic surfaces for direct methanol fuel cells. Dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

17.
Zirconium, titanium, and hafnium oxide-coated stainless steel surfaces are fabricated by reactive landing of gas-phase ions produced by electrospray ionization of group IVB metal alkoxides. The surfaces are used for in situ enrichment of phosphopeptides before analysis by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To evaluate this method we characterized ZrO2 (zirconia) surfaces by (1) comparison with the other group IVB metal oxides of TiO2 (titania) and HfO2 (hafnia), (2) morphological characterization by SEM image analysis, and (3) dependence of phosphopeptide enrichment on the metal oxide layer thickness. Furthermore, we evaluated the necessity of the reactive landing process for the construction of useful metal oxide surfaces by preparing surfaces by electrospray deposition of Zr, Ti, and Hf alkoxides directly onto polished metal surfaces at atmospheric pressure. Although all three metal oxide surfaces evaluated were capable of phosphopeptide enrichment from complex peptide mixtures, zirconia performed better than hafnia or titania as a result of morphological characteristics illustrated by the SEM analysis. Metal oxide coatings that were fabricated by atmospheric pressure deposition were still capable of in situ phosphopeptide enrichment, although with inferior efficiency and surface durability. We show that zirconia surfaces prepared by reactive landing of gas-phase ions can be a useful tool for high throughput screening of novel phosphorylation sites and quantitation of phosphorylation kinetics.  相似文献   

18.
A simple method has been developed to produce SERS-active metal surfaces. Six metal surfaces (cadmium, nickel, gold, iron, copper, and silver) have been prepared on an aluminum foil underlayment by chemical reduction and strong surface-enhanced Raman signals have been observed for pyridine species on these surfaces. This permits the direct comparison of pyridine spectra on different metal surfaces prepared by the same chemically clean method. The differences among the SER spectra of the aqueous pyridine species using different metals generally follow the trend of silver, cadmium, nickel, iron, gold, and copper, which can be explained by the selective formation of alpha-pyridyl species and the equilibria between end-on adsorbed pyridines and edge-on adsorbed alpha-pyridyl species on the different metal surfaces.  相似文献   

19.
Sun XH  Li CP  Wong NB  Lee CS  Lee ST  Teo BK 《Inorganic chemistry》2002,41(17):4331-4336
The reductive growth of metal clusters on silicon nanowires (SiNWs) is reported. The HF-etched SiNWs were found to reduce ligated Au-Ag clusters of single size, shape, composition, and structure. In the process, the surfaces of the SiNWs were reoxidized. The reductive cluster growth on the SiNW surface was followed by high-resolution transmission electron microscopy (HRTEM). The reduced metal clusters grew to different sizes in the nanometer regime (1-7 nm in diameter) on the SiNW surfaces. At sizes greater than approximately 7 nm, they tend to separate from the SiNW surfaces. Further growth and/or agglomeration of these colloidal particles to sizes greater than roughly 25 nm in diameter eventually causes the particles to precipitate from solution. Two interesting phenomena, the "sinking cluster" and the "cluster fusion" processes, were observed under TEM.  相似文献   

20.
We now report photoinduced sulfur desorption from the surfaces of Au nanoparticles loaded on metal oxides. This reaction occurs in water at ordinary temperature and pressure. Nanometer-sized Au particles have been formed on the surfaces of various metal oxides by deposition-precipitation (Au/oxides). Elemental sulfur (S8) is selectively adsorbed on the Au nanoparticle surfaces of Au/oxides in an atomic state at a coverage of (theta) 1/3. Irradiation (lambdaex > 300 nm) of the sulfur adsorbed Au/anatase TiO2 in water has led to reductive desorption of the sulfurs at room temperature. Electrochemical measurements using Au/oxides indicate that the driving force for this reaction is the photoinduced upward shift of Fermi energy of the metal oxide-supported Au nanoprticles. This study will open up a novel and wide application of heterogeneous photocatalysis for thermal catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号