首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a tunable diode laser absorption spectrometer and a static-pressure probe to follow changes in temperature, vapor-phase concentration of D2O, and static pressure during condensation in a supersonic nozzle. Using the measured static-pressure ratio p/p0 and the mass fraction of the condensate g as inputs to the diabatic flow equations, we determined the area ratio (A/A*)wet and the corresponding centerline temperature of the flow during condensation. From (A/A*)wet we determined the boundary-layer displacement thickness during condensation (delta#)wet. We found that (delta#)wet first increases relative to the value of delta# in a dry expansion (delta#)Dry before becoming distinctly smaller than (delta#)Dry downstream of the condensation region. After correcting the temperature gradient across the boundary layers, the temperature determined from p/p0 and g agreed with the temperature determined by the laser-absorption measurements within our experimental error (+/-2 K), except when condensation occurred too close to the throat. The agreement between the two temperature measurements let us draw the following two conclusions. First, the differences in the temperature and mole fraction of D2O determined by the two experimental techniques, first observed in our previous study [P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, J. Chem. Phys. 121, 9964 (2004)], can be explained sufficiently by changes in delta# caused by the condensation of D2O, except when the phase transition occurs too close to the throat. Second, the extrapolation of the equation, which expresses the temperature dependence of the heat of vaporization of bulk D2O liquid, is a good estimate of the heat of condensation of supercooled D2O down to 210 K.  相似文献   

2.
3.
Infrared absorption lines of hydrazine are broad and typically not baseline resolved, with line strengths approximately 100 times weaker than the more widely studied compound ammonia. Hardware and software improvements have been made to a two-color infrared tunable diode laser (IR-TDL) spectrometer in order to improve the limit of detection (LOD) of hydrazine (N2H4) in the cigarette smoke matrix. The detection limit in the smoke matrix was improved from 25 parts-per-million-by-volume (ppmv) to 4.2 ppmv using a 100 m pathlength cell with acquisition of background spectra immediately prior to each sample and 100 ms temporal resolution. This study did not detect hydrazine in cigarette smoke in the 964.4-964.9 cm(-1) spectral region, after mathematically subtracting the spectral contributions of ethylene, ammonia, carbon dioxide, methanol, acrolein, and acetaldehyde. These compounds are found in cigarette smoke and absorb in this spectral region. The LOD is limited by remaining spectral structure from unidentified smoke species. The pseudo random noise (root mean square) in the improved instrument was 2 x 10(-4) absorbance units (base e) which is equivalent to a 0.09 ppmv hydrazine gas sample in the multipass cell. This would correspond to a detection limit of 0.44 ppmv of hydrazine, given the dilution of the smoke by a factor of 5 by the sampling system. This is a factor of 10 less than the 4.2 ppmv detection limit for hydrazine in the smoke matrix, and indicates that the detection limit is primarily a result of the complexity of the matrix rather than the random noise of the TDL instrument.  相似文献   

4.
We describe the application of a three-laser tunable diode laser absorption spectrometer (TDLAS), called 'tracer in-situ TDLAS for atmospheric research' (TRISTAR), to measure nitrogen dioxide (NO2), formaldehyde (HCHO) and hydrogen peroxide (H2O2), during an intensive measurement campaign on Mt. Cimone (44 degrees 11'N, 10 degrees 42'E, 2165 m asl), Northern Appenines, Italy in June 2000 as part of the EU-project 'mineral dust and tropospheric chemistry' (MINATROC). The TRISTAR instrument was a major component of an instrument package, provided by the Max-Planck-Insitut für Chemie, to investigate free tropospheric gas-phase chemistry over the Appenines. Here we discuss the optical, electronic, gas flow, and calibration setup of the TDLAS used during the campaign. We characterized extensively the instrument's performance during a preparatory phase in the laboratory and compared the laboratory results to the in-field results. Consistency checks with additional trace gas measurements obtained during the campaign create high confidence in the measured concentrations. Correlations between different trace gas species, along with other evaluation tools, allow a full chemical characterization of air masses to meet the goals of the campaign.  相似文献   

5.
A technique has been developed for the determination of molecular parameters, including infrared absorption line positions, strengths, and nitrogen-broadened half-widths for 1,3-butadiene (C(4)H(6)) and propylene (C(3)H(6)). The parameters for these two molecules are required for quantitation using Tunable Diode Laser Absorption Spectroscopy (TDLAS). These molecules have populations of highly overlapping infrared absorption lines in their room temperature spectra. The technique reported here provides a procedure for estimating the molecular parameters for these overlapping absorption lines from quantitative reference spectra taken with the TDLAS instrument at different pressures and concentrations. The system was developed for the quantitation of gaseous constituents in a single puff of cigarette smoke and this paper will describe the procedure and some of the factors that influence the accuracy of quantitation for 1,3-butadiene, including the approach taken to minimize the adverse effects of the absorption due to propylene in the same spectral region.  相似文献   

6.
Intracavity laser absorption spectroscopy ("ICLAS") has been demonstrated as a feasible detection method for trace species in a discharge flow tube. This implementation has been used to measure the rate of the reaction between atomic hydrogen and NO to form HNO in helium carrier gas. A reaction rate constant of (4.3 +/- 0.4) x 10(-32) cm(6) molecule(-2) s(-1) at 295 K was measured for the reaction H + NO + M --> HNO + M (M = He). The pressure and concentration range enabled by ICLAS detection has allowed us to limit reactive pathways that would inhibit the formation of HNO. The sensitivity of ICLAS, coupled with the versatility of the discharge flow technique, suggests that intracavity absorption spectroscopy will be a useful technique for kinetics measurements on free radicals and other reactive species.  相似文献   

7.
The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 microm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppmm, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.  相似文献   

8.
9.
The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups.  相似文献   

10.
Force spectroscopy using the atomic force microscope (AFM) is a powerful technique for measuring physical properties and interaction forces at microbial cell surfaces. Typically for such a study, the point at which a force measurement will be made is located by first imaging the cell using AFM in contact mode. In this study, we image the bacterial cell Shewanella putrefaciens for subsequent force measurements using AFM in force-volume mode and compare this to contact-mode images. It is known that contact-mode imaging does not accurately locate the apical surface and periphery of the cell since, in contact mode, a component of the applied load laterally deforms the cell during the raster scan. Here, we illustrate that contact-mode imaging does not accurately locate the apical surface and periphery of the cell since, in contact mode, a component of the applied load laterally deforms the cell during the raster scan. This is an artifact due to the deformability and high degree of curvature of bacterial cells. We further show that force-volume mode imaging avoids the artifacts associated with contact-mode imaging due to surface deformation since it involves the measurement of a grid of individual force profiles. The topographic image is subsequently reconstructed from the zero-force height (the contact distance between the AFM tip and the surface) at each point on the cell surface. We also show how force-volume measurements yield applied load versus indentation data from which mechanical properties of the cell such as Young's modulus, cell turgor pressure and elastic and plastic energies can be extracted.  相似文献   

11.
A method for performing neutron radiography and locally resolved impedance spectroscopy simultaneously in situ in an operating polymer electrolyte fuel cell (PEFC) is presented. The new method provides concurrently spatially resolved information about the local cell performance, the locally limiting processes, and the liquid water distribution. Information about the impact of water on cell performance and limiting processes can be gained in situ on a local scale in an operating PEFC. The method was applied to a PEFC operated on pure H2/O2 in co-flow mode under low humidity operating conditions. The results show that in co-flow mode strong flooding and severe drying can occur at the very same time in different sections of a PEFC.  相似文献   

12.
High resolution S1-S0 fluorescence excitation spectra of tryptophol have been observed in the collision-free environment of a supersonic beam. Each origin band has been assigned to a unique conformer based on its observed rotational constants. Unlike its close relative tryptamine, which exhibits seven distinguishable conformers under similar conditions, tryptophol exhibits only four (GPy-in, GPh-in, and two anti structures). Possible reasons for this difference in behavior are discussed.  相似文献   

13.
The results of designing multipurpose high-sensitive photo-acoustic (PA) detectors and their application to high-resolution diode laser spectroscopy of molecular gases, gas analysis, and aerosol absorption measurements are summarized in this paper. The hardware and software of the diode laser spectrometer with a Helmholtz resonant PA detector providing an absorption sensitivity limit of better than 10(-7)Wm(-1)Hz(-1/2) are described. A procedure is proposed for an experiment involving the measurements of the rotational structure of hot vibrational bands of molecules. The results of the application of the nonresonant PA cell with temporal resolution of signals to measurements of weak nonresonant absorption of gases and soot aerosols are presented, and the possibility of creating a broad-band PA laser diode aerosol-meter is discussed.  相似文献   

14.
Acrolein (C(3)H(4)O) molecular line parameters, including infrared (IR) absorption positions, strengths, and nitrogen broadened half-widths, must be determined since they are not included in the high resolution transmission (HITRAN) molecular absorption database of spectral lines. These parameters are required for developing a quantitative analytical method for measuring acrolein in a single puff of cigarette smoke using tunable diode laser absorption spectroscopy (TDLAS). The task is complex since acrolein has many highly overlapping infrared absorption lines in the room temperature spectrum and the cigarette smoke matrix contains thousands of compounds. This work describes the procedure for estimating the molecular line parameters for these overlapping absorption lines in the wavenumber range (958.7-958.9 cm(-1)) using quantitative reference spectra taken with the infrared lead-salt TDLAS instrument at different pressures and concentrations. The nitrogen broadened half-width for acrolein is 0.0937 cm(-1)atm(-1) and to our knowledge, is the first time it has been reported in the literature.  相似文献   

15.
We have performed absorption measurements of OH using a cw tunable laser. Results indicate that this technique, when combined with frequency modulation, promises a sensitivity of 105 molecules/cm3 for OH monitoring in the atmosphere.  相似文献   

16.
The cross-sectional distribution of free antimony atoms generated from admission of stibine into quartz tube atomizers was measured by atomic absorption spectrometry. A CCD camera was used for the spatially resolved detection. In the unheated flame-in-tube atomizer, the highest free atom concentration was found near the tube axis, decreasing towards the walls. The free atom distribution was not influenced by atomization conditions such as purge gas flow rate and oxygen delivery. Significant changes in the free atom distribution were obtained by changing the position of the oxygen delivery capillary tip. Analyte reactions within the tube were revealed from an analysis of the curvature of the calibration curve. In the externally heated atomizer (900°C), the free atom distribution was much more homogeneous compared to the unheated atomizer under analytical conditions. However, pronounced inhomogeneity (higher concentration of free atoms near the tube axis and in the regions close to the walls) was obtained at high Sb concentrations in a roll-over part of the calibration curve (over 300 ng ml−1). This is explained on the basis of free atom decay on the surface of polyatomic particles formed at high analyte concentrations. From a practical point of view, no effects caused by the inhomogeneous free atom distribution are to be expected in the heated `flameless' tubes, the most widely used in routine analysis, since cross-sectional inhomogeneity observed under typical working conditions was negligible.  相似文献   

17.
Acrolein (C3H4O) molecular line parameters, including infrared (IR) absorption positions, strengths, and nitrogen broadened half-widths, must be determined since they are not included in the high resolution transmission (HITRAN) molecular absorption database of spectral lines. These parameters are required for developing a quantitative analytical method for measuring acrolein in a single puff of cigarette smoke using tunable diode laser absorption spectroscopy (TDLAS). The task is complex since acrolein has many highly overlapping infrared absorption lines in the room temperature spectrum and the cigarette smoke matrix contains thousands of compounds. This work describes the procedure for estimating the molecular line parameters for these overlapping absorption lines in the wavenumber range (958.7–958.9 cm−1) using quantitative reference spectra taken with the infrared lead-salt TDLAS instrument at different pressures and concentrations. The nitrogen broadened half-width for acrolein is 0.0937 cm−1 atm−1 and to our knowledge, is the first time it has been reported in the literature.  相似文献   

18.
In this study we introduce the use of tunable diode laser absorption spectroscopy (TDLAS) as a technique for making measurements of the δ13C of animal ‘breath’ in near real time. The carbon isotope ratios (δ13C) of breath CO2 trace the carbon source of the materials being metabolized, which can provide insight into the use of specific food resources, e.g. those derived from plants using C3 versus C4 or CAM photosynthetic pathways. For physiological studies, labeled substrates and breath analyses provide direct evidence of specific physiological (e.g. fermentative digestion) or enzymatic (e.g. sucrase activity) processes. Although potentially very informative, this approach has rarely been taken in animal physiological or ecological research. In this study we quantify the utilization of different plant resources (photosynthetic types – C3 or C4) in arthropod herbivores by measuring the δ13C of their ‘breath’ and comparing it with bulk tissue values. We show that breath δ13C values are highly correlated with bulk tissues and for insect herbivores reflect their dietary guild, in our case C3‐specialists, C4‐specialists, or generalists. TDLAS has a number of advantages that will make it an important tool for physiologists, ecologists and behaviorists: it is non‐invasive, fast, very sensitive, accurate, works on animals of a wide range of body sizes, per‐sample costs are small, and it is potentially field‐deployable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
An element-selective detector for chromatography based on atomic absorption spectrometry with semiconductor diode lasers is described. The analytical utility of the technique is demonstrated by speciation examples of HPLC and GC employing analytical flames and plasmas to atomize.  相似文献   

20.
Acrolein and 1,3-butadiene in cigarette smoke generally are measured using two separate analytical methods, a carbonyl derivative HPLC method for acrolein and a volatile organic compound (VOC) GC/MS method for 1,3-butadiene. However, a single analytical method having improved sensitivity and real-time per puff measurement will offer more specific information for evaluating experimental carbon filtered cigarettes designed to reduce the smoke deliveries of these constituents. This paper describes an infrared technique using two lead-salt tunable diode lasers (TDLs) operating with liquid nitrogen cooling with emissions at 958.8 cm(-1) and 891.0 cm(-1) respectively for the simultaneous measurement of acrolein and 1,3-butadiene, respectively, in each puff of mainstream cigarette smoke in real time. The dual TDL system uses a 3.1l volume, 100 m astigmatic multiple pass absorption gas cell. Quantitation is based on a spectral fit that uses previously determined infrared molecular line parameters generated in our laboratory, including line positions, line strengths and nitrogen-broadened half-widths for these species. Since acrolein and ethylene absorption lines overlap and 1,3-butadiene, ethylene and propylene absorption lines overlap, the per puff deliveries of ethylene and propylene were determined since their overlapping absorption lines must be taken into account by the spectral fit. The acrolein and 1,3-butadiene total cigarette deliveries for the 1R5F Kentucky Reference cigarette were in agreement with the HPLC and GC/MS methods, respectively. The limit of detection (LOD) for 1,3-butadiene and acrolein was 4 ng/puff and 24 ng/puff, respectively, which is more than adequate to determine at which puff they break through the carbon filter. The retention and breakthrough behavior for the two primary smoke constituents depend on the cigarette design and characteristics of the carbon filter being evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号