首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changing the orientational order in liquid-crystal elastomers leads to internal stresses and changes of the sample shape. When this effect is induced by light, due to photoisomerization of constituent molecular moieties, the photomechanical actuation results. We investigate quantitatively how the intensity and the polarization of light affect photoactuation. By studying dissolved, as well as covalently bonded azo-dyes, we determine the changes in absorption and the response kinetics. For the first time we compare the response of aligned monodomain, and randomly disordered polydomain nematic elastomers, and demonstrate that both have a comparable photoresponse, strongly dependent on the polarization of light. Polarization-dependent photoactuation in polydomain elastomers gives an unambiguous proof of its mechanism since it is the only experiment that distinguishes from the associated thermal effects.  相似文献   

2.
Using a scaling approach we consider a 2D comb copolymer brush under bending deformations. We show that the rectilinear brush is locally stable and can be characterized by a persistence length λ increasing with the molecular weight of grafting side chains as λ ∼ M3. A bending instability due to redistribution of the side chains appears in the non-linear regime where bending is strong. Arguments are presented that the brush conformations consist of alternating rectilinear and bent sections corresponding to the different free-energy minima.  相似文献   

3.
Twist stiffness and an asymmetric bending stiffness of a polymer or a polymer bundle is captured by the elastic ribbon model. We investigate the effects a ring geometry induces to a thermally fluctuating ribbon, finding bend-bend coupling in addition to twist-bend coupling. Furthermore, due to the geometric constraint the polymer's effective bending stiffness increases. A new parameter for experimental investigations of polymer bundles is proposed: the mean square diameter of a ribbonlike ring, which is determined analytically in the semiflexible limit. Monte Carlo simulations are performed which affirm the model's prediction up to high flexibility.  相似文献   

4.
We present in this work in vitro measurements of the force ejecting DNA from two distinct bacteriophages (T5 and λ using the osmotic-suppression technique. Our data are analyzed by revisiting the current theories of DNA packaging in spherical capsids. In particular we show that a simplified analytical model based on bending considerations only is able to account quantitatively for the experimental findings. Physical and biological consequences are discussed.  相似文献   

5.
Tilt of hydrocarbon chains of lipid molecules with respect to membrane plane is commonly considered to characterize the internal structure of a membrane in the crystalline state. However, membranes in the liquid state can also exhibit tilt resulting from packing constraints imposed on the lipid molecules in diverse biologically relevant structures such as intermediates of membrane fusion, pores in lipid bilayers and others. We analyze the energetics of tilt in liquid membranes and its coupling with membrane bending. We consider three contributions to the elastic energy: constant tilt, variation of tilt along the membrane surface and membrane bending. The major assumption of the model is that the core of a liquid membrane has the common properties of an elastic continuum. We show that the variation of tilt and membrane bending are additive and that their energy contributions are determined by the same elastic coefficient: the Helfrich bending modulus, the modulus of Gaussian curvature and the spontaneous curvature known from previous studies of pure bending. The energy of a combined deformation of bending and varying tilt is determined by an effective tensor accounting for the two factors. In contrast, the deformation of constant tilt does not couple with bending and its contribution to the elastic energy is determined by an independent elastic constant. While accurate determination of this constant requires additional measurements, we estimate its value using a simplified approach. We discuss the relationships between the obtained elastic Hamiltonian of a membrane and the previous models of membrane elasticity. Received 10 February 2000 and Received in final form 19 June 2000  相似文献   

6.
We present a phase field model on buckling membranes to analyze phase separation and budding on soft membranes. By numerically integrating dynamic equations, it turns out that the formation of caps is greatly influenced by the presence of a little excess area due to the surface area constraint. When cap-shaped domains are created, domain coalescence is mainly observed not between domains with same budding directions, but between domains with opposite budding directions, because the bending energy between two domains is larger in the former case. Although we do not introduce spontaneous curvature like Helfrich model, we obtain some suggestions related to the slow dynamics of the phase separation on vesicles.  相似文献   

7.
In light-driven liquid-crystal network (LCN) actuators, large performance improvements are obtained by varying the orientation of the molecular director through the thickness of the film actuator. Experiments show that sub-millimeter bending radii are achieved using a splayed molecular orientation. Systems with a splayed or twisted nematic (TN) director profile drive greater amplitude and faster bending than uniaxial planar systems with the same chemical composition. The bending radii of these systems are predicted using a simple model including effects of light intensity, material composition and actuator thickness. Electronic supplementary material Supplementary material in form of video file available from the Journal web page at and are accessible for authorised users.  相似文献   

8.
Fluctuation spectra of fluid compound membrane systems are calculated. The systems addressed contain two (or more) almost parallel membranes that are connected by harmonic tethers or by a continuous, harmonic confining potential. Additionally, such a compound system can be attached to a supporting substrate. We compare quasi-analytical results for tethers with analytical results for corresponding continuous models and investigate under what circumstances the discrete nature of the tethers actually influences the fluctuations. A tethered, supported membrane pair with similar bending rigidities and stiff tethers can possess a nonmonotonic fluctuation spectrum with a maximum. A nonmonotonic spectrum with a maximum and a minimum can occur for an either free or supported membrane pair of rather different bending rigidities and for stiff tethers. Typical membrane displacements are calculated for supported membrane pairs with discrete or continuous interacting potentials. Thereby an estimate of how close the constituent two membranes and the substrate typically approach each other is given. For a supported membrane pair with discrete or continuous interactions, the typical displacements of each membrane are altered with respect to a single supported membrane, where those of the membrane near the substrate are diminished and those of the membrane further away are enhanced.  相似文献   

9.
We study the elasticity of random stiff fiber networks. The elastic response of the fibers is characterized by a central force stretching stiffness as well as a bending stiffness that acts transverse to the fiber contour. Previous studies have shown that this model displays an anomalous elastic regime where the stretching mode is fully frozen out and the elastic energy is completely dominated by the bending mode. We demonstrate by simulations and scaling arguments that, in contrast to the bending dominated elastic energy, the equally important elastic forces are to a large extent stretching dominated. By characterizing these forces on microscopic, mesoscopic and macroscopic scales we find two mechanisms of how forces are transmitted in the network. While forces smaller than a threshold Fc are effectively balanced by a homogeneous background medium, forces larger than Fc are found to be heterogeneously distributed throughout the sample, giving rise to highly localized force chains known from granular media.  相似文献   

10.
We re-examine here the theoretical study of the phase separation between phospholipids and grafted long polymer chains onto a fluid membrane. The polymer chains are assumed to be anchored to the membrane by one extremity (anchor). The anchors are big amphiphile lipid molecules. The anchors and phospholipids forming the bilayer phase separate under the variation of a suitable parameter (temperature, pressure, membrane environment, ...). To investigate the demixtion transition, we elaborate a new approach that takes into account the membrane undulations. We show that these undulations have the tendency to induce additional attractive forces between anchors, and consequently, the separation transition is accentuated and occurs at high temperature. Quantitatively, we show that the membrane undulations contribute with an extra positive segregation parameter χm > 0 , which scales as χm κ-2 , where κ is the bending rigidity constant. Therefore, the attraction phenomenon between species of the same kind is significant only for those membranes of small bending rigidity constant. Finally, the study is extended to the case where the lengths of the anchored polymer chains are randomly distributed. To achieve calculations, we choose a length distribution of fractal form. The essential conclusion is that the polydispersity increases the size of domains alternatively rich in phospholipids and anchors.  相似文献   

11.
We amplify previous arguments why mean curvature should be used as measure of integration in calculating the effective bending rigidity of fluid membranes subjected to a weak background curvature. The stiffening of the membrane by its fluctuations, recently derived for spherical shapes, is recovered for cylindrical curvature. Employing curvilinear coordinates, we then discuss stiffening for arbitrary shapes, confirm that the elastic modulus of Gaussian curvature is not renormalized in the presence of fluctuations, and show for the first time that any spontaneous curvature also remains unchanged. Received 19 April 1999 and in Received in final form 7 January 2000  相似文献   

12.
We report the adhesion of binary giant vesicles composed of two types of phospholipids, one has negative spontaneous curvature which tends to bend toward the head group and the other has zero spontaneous curvature. In a homogeneous one-phase region, the giant vesicles do not adhere to each other, whereas in a coexisting two-phase region, the giant vesicles show adhesion. A fluorescence microscope observation reveals that the adhesion takes place through the domains rich in phospholipids having negative spontaneous curvature. We propose a phase separation induced hemifusion model where two apposed monolayers of adjacent vesicles are hemifused in order to reduce the bending energy of monolayers with negative spontaneous curvature and the boundary energy between the domains and matrix. We provide a strong evidence for the hemifusion model by lipid transfer experiments.  相似文献   

13.
14.
We studied the formation of actin scaffolds in giant vesicles of dimyristoylphosphatidylcholine (DMPC). Polymerization of actin was induced at low ionic strength through ionophore-mediated influx of Mg2+ (2 mM). The spatial organization of the filamentous actin was visualized by confocal and epifluorescence microscopy as a function of the filaments length and membrane composition, by including various amounts of cholesterol or lipids with neutral and positively charged polyethyleneglycol headgroups (PEG lipopolymers). In vesicles of pure DMPC, the newly polymerized actin adsorbs to the membrane and forms a thin shell. In the presence of 2.5 mol% lipopolymers or of cholesterol at a molar fraction x = 0.37, formation of a thin adsorbed film is impeded. A fuzzy cortex is predominantly formed in vesicles of diameter d smaller than the filament persistence length ( d ⩽ 15μm) while for larger vesicles a homogeneous network formation is favoured in the bulk of the vesicle. The fuzzy-cortex formation is interpreted as a consequence of the reduction of the bending energy if the actin filaments accumulate close to the vesicle wall. Received: 17 January 2002 / Accepted: 21 March 2003 / Published online: 24 April 2003 RID="a" ID="a"e-mail: Laurent_Limozin@ph.tum.de  相似文献   

15.
We present an analysis of extensive large-scale Monte Carlo simulations of self-avoiding fixed-connectivity membranes for sizes (number of faces) ranging from 512 to 17672 (triangular) plaquettes. Self-avoidance is implemented via impenetrable plaquettes. We simulate the impenetrable plaquette model in both three and four bulk dimensions. In both cases we find the membrane to be flat for all temperatures: the size exponent in three dimensions is ν = 0.95(5) (Hausdorff dimension d H = 2.1(1)). The single flat phase appears, furthermore, to be equivalent to the large bending rigidity phase of non-self-avoiding fixed-connectivity membranes --the roughness exponent in three dimensions is ξ = 0.63(4). This suggests that there is a unique universality class for flat fixed-connectivity membranes without attractive interactions. Finally, we address some theoretical and experimental implications of our work. Received 23 June 2000 and Received in final form 25 October 2000  相似文献   

16.
A surface model of Nambu and Goto is studied statistical mechanically by using the canonical Monte Carlo simulation technique on a spherical meshwork. The model is defined by the area energy term and a one-dimensional bending energy term in the Hamiltonian. We find that the model has a large variety of phases; the spherical phase, the planar phase, the long linear phase, the short linear phase, the wormlike phase, and the collapsed phase. Almost all two neighboring phases are separated by discontinuous transitions. It is also remarkable that no surface fluctuation can be seen in the surfaces both in the spherical phase and in the planar phase.  相似文献   

17.
The adhesion of fluid vesicles at chemically structured substrates is studied theoretically via Monte Carlo simulations. The substrate surface is planar and repels the vesicle membrane apart from a single surface domain γ , which strongly attracts this membrane. If the vesicle is larger than the attractive γ domain, the spreading of the vesicle onto the substrate is restricted by the size of this surface domain. Once the contact line of the adhering vesicle has reached the boundaries of the γ domain, further deflation of the vesicle leads to a regime of low membrane tension with pronounced shape fluctuations, which are now governed by the bending rigidity. For a circular γ domain and a small bending rigidity, the membrane oscillates strongly around an average spherical cap shape. If such a vesicle is deflated, the contact area increases or decreases with increasing osmotic pressure, depending on the relative size of the vesicle and the circular γ domain. The lateral localization of the vesicle's center of mass by such a domain is optimal for a certain domain radius, which is found to be rather independent of adhesion strength and bending rigidity. For vesicles adhering to stripe-shaped surface domains, the width of the contact area perpendicular to the stripe varies nonmonotonically with the adhesion strength.  相似文献   

18.
We investigate the osmotic equilibrium between a bulk polyethylene glycol (PEG) solution and DNA tightly packed in a spherical capsid. We base our analysis on the equations of thermodynamic equilibrium in terms of osmotic pressure. The equality between external osmotic pressure of PEG and osmotic pressure of tightly packed DNA gives us the DNA encapsidation curves. In this way we directly connect the wealth of existing osmotic pressure data for DNA in the bulk with the DNA encapsidation curves within small viral capsids. Specific calculations are made for a monovalent salt, Na(+) -DNA and a divalent salt, Mn(2+) -DNA that have quite different DNA encapsidation behaviors. The main conclusion of our work is that bending energy of DNA is of minor importance regarding the encapsidated DNA length, but has a non-negligible influence on the density distribution of DNA within the capsid.  相似文献   

19.
Linear stability analysis of capillary instabilities in a thin nematic liquid crystalline cylindrical fiber embedded in an immiscible viscous matrix is performed by formulating and solving the governing nemato-capillary equations, that include the effect of temperature on the nematic ordering as well as the effect of the nematic orientation. A representative axial nematic orientation texture with the planar easy axis at the fiber surface is studied. The surface disturbance is expressed in normal modes, which include the azimuthal wave number m to take into account non-axisymmetric modes. Capillary instabilities in nematic fibers reflect the anisotropic nature of liquid crystals, such as the ordering and orientation contributions to the surface elasticity and surface normal and bending stresses. Surface gradients of normal and bending stresses provide additional anisotropic contributions to the capillary pressure that may renormalize the classical displacement and curvature forces that exist in any fluid fiber. The exact nature (stabilizing and destabilizing) and magnitude of the renormalization of the displacement and curvature forces depend on the nematic ordering and orientation, i.e. the anisotropic contribution to the surface energy, and accordingly capillary instabilities may be axisymmetric or non-axisymmetric. In addition, when the interface curvature effects are accounted for as contributions of the work of interfacial bending and torsion to the total energy of the system, the higher-order bending moment contribution to the surface stress tensor is critical in stabilizing the fiber instabilities. For the planar easy axis, the nematic ordering contribution to the surface energy, which renormalizes the effect of the fiber shape, plays a crucial role to determine the instability mechanisms. Moreover, the unstable modes, which are most likely observed, can be driven by the dependence of surface energy on the surface area. Low-ordering fibers display the classical axisymmetric mode, since the surface energy decreases by decreasing the surface area. Decreasing temperature gives rise to the encounter with a local maximum or to monotonic increase of the characteristic length of the axisymmetric mode. Meanwhile, in the presence of high surface ordering, non-axisymmetric finite wavelength instabilities emerge, with higher modes growing faster since the surface energy decreases by increasing the surface area. As temperature decreases, the pitches of the chiral microstructures become smaller. However, this non-axisymmetric instability mechanism can be regulated by taking account of the surface bending moment, which contains higher order variations in the interface curvatures. More and more non-axisymmetric modes emerge as temperature decreases, but, at constant temperature, only a finite number of non-axisymmetric modes are unstable and a single fastest growing mode emerges with lower and higher unstable modes growing slower. For nematic fibers, the classical fiber-to-droplet transformation is one of several possible instability pathways, while others include chiral microstructures. The capillary instabilities' growth rate of a thin nematic fiber in a viscous matrix is suppressed by increasing either the fiber or matrix viscosity, but the estimated droplet sizes after fiber breakup in axisymmetric instabilities decrease with increasing the matrix viscosity. Received 15 April 2002 and Received in final form 3 October 2002 RID="a" ID="a"e-mail: alejandro.rey@mcgill.ca  相似文献   

20.
The minimal energy configurations of finite Nv-body vortices in a rotating trapped Bose-Einstein condensate is studied analytically by extending the previous work [Y. Castin, R. Dum, Eur. Phys. J. D 7, 399 (1999)], and taking into account the finite size effects on z-direction and the bending of finite vortex lines. The calculation of the energy of the vortices as a function of the rotation frequency of the trap gives number, curvature, configuration of vortices and width of vortex cores self-consistently. The numerical results show that (1) the simplest regular polynomial of the several vortex configurations is energetically favored; while the hexagonal vortex lattice is more stable than square lattice; (2) bending is more stable then straight vortex line along the z-axis for λ<1; (3) the boundary effect is obvious: compared with the estimation made under infinite boundary, the finite size effect leads to a lower vortex density, while the adding vortex bending results in a less higher density because of the expansion. The results are in well agreement with the other authors' ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号