首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A vertical melt column set up between an upper heating rod and a lower sample rod, i.e. the so-called halfzone system, is a convenient experimental tool for studying convection in the melt in floating-zone crystal growth. In order to help understand the convection observed in the melt column, a computer model has been developed to describe steady state, axisymmetrical thermocapillary flow and natural convection in the melt. The governing equations and boundary conditions are expressed in general non-orthogonal curvilinear co-ordinates in order to accurately treat the unknown melt/solid interface as well as all other physical boundaries in the system. The effects of key dimensionless variables on the following items are discussed: (1)convection and temperature distribution in the melt; (2) the shape of the melt/solid interface; (3) the height of the melt column. These dimensionless variables are the Grashof, Marangoni and Prandtl numbers.  相似文献   

2.
Steady, laminar, natural-convection flow in the presence of a magnetic field in an inclined square enclosure differentially heated along the bottom and left vertical walls while the other walls are kept isothermal was considered. The governing equations were solved numerically for the stream function, vorticity and temperature ratio using the differential quadrature method for various Grashof and Hartmann numbers, inclination angle of the enclosure and direction of the magnetic field. The orientation of the enclosure changes the temperature gradient inside and has a significant effect on the flow pattern. Magnetic field suppresses the convective flow and its direction also influences the flow pattern, causing the appearance of inner loops and multiple eddies. The surface heat flux along the bottom wall is slightly increased by clockwise inclination and reduced by half by the counterclockwise inclination. The surface heat flux along the upper portion of the left side wall is reversed by the rise of warmer fluids due to the convection currents for no inclination and clockwise inclination of the enclosure.  相似文献   

3.
In this work, the natural convection in a concentric annulus between a cold outer square cylinder and a heated inner circular cylinder is simulated using the differential quadrature (DQ) method. The vorticity‐stream function formulation is used as the governing equation, and the coordinate transformation technique is introduced in the DQ computation. It is shown in this paper that the outer square boundary can be approximated by a super elliptic function. As a result, the coordinate transformation from the physical domain to the computational domain is set up by an analytical expression, and all the geometrical parameters can be computed exactly. Numerical results for Rayleigh numbers range from 104 to 106 and aspect ratios between 1.67 and 5.0 are presented, which are in a good agreement with available data in the literature. It is found that both the aspect ratio and the Rayleigh number are critical to the patterns of flow and thermal fields. The present study suggests that a critical aspect ratio may exist at high Rayleigh number to distinguish the flow and thermal patterns. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
侧加热腔内的自然对流   总被引:1,自引:0,他引:1  
徐丰  崔会敏 《力学进展》2014,44(1):201403
开展侧加热腔内自然对流的研究具有重大的环境及工业应用背景. 总结侧加热腔内水平温差驱动的自然对流的最新研究进展, 并概述相应的流动性质、动力机制和传热特性以及对不同无量纲控制参数的依赖也有重要的科学价值. 已取得的研究结果显示突然侧加热的腔内自然对流的发展可包括初始阶段、过渡阶段和定常或准定常阶段. 不同发展阶段的流动依赖于瑞利数、普朗特数及腔体的高宽比, 且定常或准定常阶段的流态可以是定常层流流动、非定常周期性流动或者湍流流动. 此外, 回顾了对流流动失稳机制的研究成果以及湍流自然对流方面的新进展. 最后, 展望了侧加热腔内的自然对流研究的前景.   相似文献   

5.
6.
Two-dimensional numerical simulations of laminar natural convection in a partially cooled, differentially heated inclined cavities are performed. One of the cavity walls is entirely heated to a uniformly high temperature (heat source) while the opposite wall is partially cooled to a lower temperature (heat sink). The remaining walls are adiabatic. The tilt angle of the cavity is varied from 0° (heated from left) to −90° (heated from top). The fast false implicit transient scheme (FITS) algorithm, developed earlier by the same authors, is modified to solve the derived variables vorticity-streamfunction formulation. The effects of aspect ratio (AR), sink–source ratio and tilt angle on the average Nusselt number are examined through a parametric study; solutions are obtained for two Grashof numbers, 105 and 107. Flow patterns and isotherms are used to investigate the heat transfer and fluid flow mechanisms inside the cavity. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
The influence of elasticity and shear thinning viscosity on the temperature distribution and heat transfer in natural thermal convection is discussed. The numerical investigations are based on a four-parameter Oldroyd constitutive equation, which represents the typical fluid response of dilute solutions and melts. It was found that especially the second normal-stress difference affects the heat transfer mechanism.  相似文献   

8.
9.
An analysis is performed to study the free convection of a dusty‐gas flow along a semi‐infinite isothermal vertical cylinder. The governing equations of the flow problem are transformed into non‐dimensional form and the resulting nonlinear, coupled parabolic partial differential equations have been solved numerically using an implicit finite difference scheme of Crank–Nicholson type. The flow variables such as gas–velocity, dust‐particle velocity and temperature, shearing stress and heat transfer coefficients are calculated numerically for various parameters occurring in the problem. It is observed that due to the presence of dust particles, the gas velocity is found to decrease. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Experiments of natural convection from arrays of one, two, and three horizontal cylinders attached vertically one above the other to a heated, vertical flat plate in water have shown that the lowest cylinder is essentially unaffected by cylinders above it and has a heat transfer rate less than that of an infinitely long cylinder. The effect on the heat transfer from cylinders in the wake of the lowest cylinder is primarily a function of the spacing between the cylinders, with the increase being larger for greater spacing. For these wake cylinders, increases are sufficient to cause the heat transfer to equal that of an infinite cylinder.  相似文献   

11.
The problem of two-dimensional, periodic in the horizontal coordinate, convection of an incompressible fluid heated from below between two horizontal planes is considered. The problem is solved in two formulations: with (stress-)free and hard (no-slip) boundary conditions on the horizontal planes. It is shown that at small supercriticalities the two-dimensional convection calculation leads to more correct results with hard than with free boundary conditions. It is established that the difference between the free and hard conditions is most strongly manifested in the pulsations of the vertical velocity component, whereas the dependence of the Nusselt number and the pulsations of the horizontal velocity component on the boundary conditions is more weakly expressed.  相似文献   

12.
The problem of non-Darcy natural convection adjacent to a vertical cylinder embedded in a thermally stratified porous medium has been analyzed. Nonsimilarity solutions are obtained for the case that the ambient temperature increases linearly with height of the cylinder. A generalized flow model was used in the present study to include the effects of the macroscopic viscous term and the microscopic inertial force. Also, the thermal dispersion effect is considered in the energy equation. Thus, the main aim of this work is to examine the effects of thermal stratification and non-Darcy flow phenomena on the free convection flow and heat transfer characteristics. It was found that the present problem depends on six parameters, namely, the local thermal stratification parameter ξ, the boundary effect parameter Bp, the modified Grashof number Gr*, wall temperature exponent m, the curvature parameter ω, and the modified Rayleigh number based on pore diameter Ra d . The impacts of these governing parameters on the local heat transfer parameter are discussed in great detail. Also, representative velocity and temperature profiles are presented at selected values of the thermal stratification parameter. In general, the local heat transfer parameter is increased with increasing the values of m, ω, and Ra d ; while it is decreased with increasing the values of ξ, Bp, and Gr*. Received on 19 May 1998  相似文献   

13.
14.
In this paper, a novel thermal filter-matrix lattice Boltzmann model based on large eddy simulation (LES) is proposed for simulating turbulent natural convection. In this study, the Vreman subgrid-scale eddy-viscosity model is introduced into the present framework of LES to accurately predict the flow in near-wall region. Two dimensional numerical simulations of natural convection in a square cavity were performed at high Rayleigh number varying from 107 to 1010 with a fixed Prandtl number of Pr = 0.71. The influences of the higher-order terms upon the present results at high Rayleigh numbers are examined, taking Ra = 107 and 108 as the example, revealing that the proper minimization of the higher-order terms can improve numerical accuracy of present model for high Rayleigh convective flow. For the turbulent convective flow, the time-averaged quantities in the median lines are presented and compared against those available results from previous studies. The general structure of turbulent boundary layers is well predicted. All numerical results exhibit good agreement with the benchmark solutions available in the previous literatures.  相似文献   

15.
The buoyant Marangoni convection heat transfer in a differentially heated cavity is numerically studied. The cavity is filled with water-Ag, water-Cu, water-Al2O3, and water-TiO2 nanofluids. The governing equations are based on the equations involving the stream function, vorticity, and temperature. The dimensionless forms of the governing equations are solved by the finite difference (FD) scheme consisting of the alternating direction implicit (ADI) method and the tri-diagonal matrix algorithm (TDMA). It is found that the increase in the nanoparticle concentration leads to the decrease in the flow rates in the secondary cells when the convective thermocapillary and the buoyancy force have similar strength. A critical Marangoni number exists, below which increasing the Marangoni number decreases the average Nusselt number, and above which increasing the Marangoni number increases the average Nusselt number. The nanoparticles play a crucial role in the critical Marangoni number.  相似文献   

16.
17.
18.
Experimental heat transfer measurements and analysis for mixed convection in a vertical square channel are presented. Water flow directions are selected such that buoyancy assists or opposes the bulk flow pressure gradient. Unlike most previous experiments with symmetrically heated circular tubes, the present configuration uses an asymmetric heating condition (two sides heated and two sides insulated) and shows significant increase in the Nusselt number for both assisted and opposed flow conditions. Observed heat transfer coefficient distributions are different from the symmetrically heated channels; and this difference in heat transfer coefficient is attributed to the formation of buoyancy driven large-scale flow structures. In general, opposed flow shows higher heat transfer coefficients, and the Nusselt number ratio is observed to increase as Gr/Re or Gr/Re2 ratios increase for both assisted and opposed flow conditions. A correlation based on the buoyancy parameter predicts the heat transfer pattern well in both assisted and opposed mixed convection. The range of Reynolds numbers discussed (Re=400–10,000) is of importance for direct numerical simulations and the details provided here can serve as the benchmark data required for complicated buoyancy affected turbulence simulations.  相似文献   

19.
The Darcy–Boussinesq equations are solved in two dimensions and in elliptical cylindrical co‐ordinates using a second‐order‐accurate finite difference code and a very fine grid. For the limiting case of a circular geometry, the results show that a hysteresis loop is possible for some values of the radius ratio, in agreement both with previous calculations using cylindrical co‐ordinates and with the available experimental data. For the general case of an annulus of elliptical cross‐section, two configurations, blunt or slender, are considered. When the major axes are horizontal (blunt case) a hysteresis loop appears for a certain range of Raleigh numbers. For the slender configuration, when the major axes are vertical, a transition from a steady to a periodic regime (Hopf bifurcation) has been evidenced. In all cases, the heat transfer rate from the slender geometry is greater than that obtained in the blunt case. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Steady two‐dimensional natural convection in an inclined parallel‐walled channel was investigated numerically. The full elliptic forms of conservation equations were solved together and the velocity vectors, temperature contours and local and average Nusselt number distribution were obtained. The comparisons of local and average Nusselt number with published experimental and numerical results indicate very good agreement. Results are presented for a single aspect ratio, L/b=24, over the range of Rayleigh number of 3–1000 and angle of inclination 0–90°. The results indicate that the overall channel average Nusselt number is reduced as the inclination angle is increased. Significant reductions in the overall Nusselt number are exhibited at high angle of channel inclination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号