首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the estimation of amlodipine in human plasma. Amlodipine was extracted from human plasma by using a solid-phase extraction technique. Imipramine was used as the internal standard. A Hypersil BDS C18 column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves a rapid solid-phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables detection at sub-nanogram levels. The proposed method has been validated for a linear range of 0.1-10.0 ng/mL with correlation coefficient >or=0.9990. The intrarun and interrun precision and accuracy were within 10.0%. The overall recovery for amlodipine was 63.67%. Total run time was 3.2 min only.  相似文献   

2.
Historically, structural elucidation of unknown analytes by mass spectrometry alone has involved tandem mass spectrometry experiments using electron ionization. Most target molecules for bioanalysis in the metabolome are unsuitable for detection by this previous methodology. Recent publications have used high‐resolution accurate mass analysis using an LTQ‐Orbitrap with the more modern approach of electrospray ionization to identify new metabolites of known metabolic pathways. We have investigated the use of this methodology to build accurate mass fragmentation maps for the structural elucidation of unknown compounds. This has included the development and validation of a novel multi‐dimensional LC/MS/MS methodology to identify known uremic analytes in a clinical hemodialysate sample. Good inter‐ and intra‐day reproducibility of both chromatographic stages with a high degree of mass accuracy and precision was achieved with the multi‐dimensional liquid chromatography/tandem mass spectrometry (LC/MS/MS) system. Fragmentation maps were generated most successfully using collision‐induced dissociation (CID) as, unlike high‐energy CID (HCD), ions formed by this technique could be fragmented further. Structural elucidation is more challenging for large analytes >270 Da and distinguishing between isomers where their initial fragmentation pattern is insufficiently different. For small molecules (<200 Da), where fragmentation data may be obtained without loss of signal intensity, complete structures can be proposed from just the accurate mass fragmentation data. This methodology has led to the discovery of a selection of known uremic analytes and two completely novel moieties with chemical structural assignments made. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A method using an online solid-phase extraction (SPE) and ion-pairing liquid chromatography with electrospray tandem mass spectrometry (LC/ES-MS/MS) was developed for determination of amphetamine (Amp), methamphetamine (mAmp), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxyethylamphetamine (MDEA), and 3,4-methylenedioxymethamphetamine (MDMA) in urine samples. A SPE cartridge column with both hydrophilic and lipophilic functions was utilized for online extraction. A reversed-phase C18 LC column was employed for LC separation and MS/MS was used for detection. Trifluoroacetic acid was added to the mobile phase as an ion-pairing reagent. This method was fully automated and the extraction and analysis procedures were controlled by a six-port switch valve. Recoveries ranging from 85-101% were measured. Good linear ranges (10-500 ng/mL) for Amp and mAmp were determined. For MDA, MDMA and MDEA, dual linear ranges were obtained from 5-100 and 100-500 ng/mL, respectively. The detection limit of each analytical compound, based on a signal-to-noise ratio of 3, ranged from 1-3 ng/mL. The applicability of this newly developed method was examined by analyzing several urine samples from drug users. Good agreement was obtained between the results from this method and a literature GC/MS method.  相似文献   

4.
A rapid and stable high-performance liquid chromatography-diode array detection (HPLC-DAD) and a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS) method were developed and validated for the separation, determination, and identification of eight pairs of diastereoisomers of podophyllotoxin and its esters at C-2 position. The separation was carried out on BDS Hypersil C18 column with CH3OH-CH3CN-H2O as the mobile phase in a gradient program. Interestingly, every 2alpha-H compound migrated before its corresponding 2beta-H epimer under optimum conditions. Also, the [M+NH(4)](+) of all eight pairs of compounds was observed in the HPLC-ESI/MS spectra. The characteristic elimination from the precursor protonated ions and the product ions at m/z 397, 313, 282, and 229 were the common diagnostic masses. The ion ratios of relative abundance [M-ROH+H](+) (ion 397) to [M+NH(4)](+), [A+H](+) (ion 313) to [M-ROH+H](+), and [M-ROH-ArH+H](+) (ion 229) to [M-ROH+H](+) in the ESI/MS/MS spectra of each pair of diastereoisomers of the lignans specifically exhibited a stereochemical effect. Thus, by using identical sample solutions and chromatographic conditions (including the same columns and gradient programs), the combination of DAD and MS/MS data permitted the separation and identification of the eight pairs of diastereoisomers of the podophyllotoxin and its esters in the mixture. The method could be used in rapidly identifying the purity and monitoring of the epimerization of 2-H of podophyllotoxin and its analogues from natural products, chemical reactions, and pharmaceutical metabolism.  相似文献   

5.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) method to determine levonorgestrel in human plasma was developed and fully validated. After hexane-ethyl acetate (70:30, v/v) induced extraction from the plasma samples, levonorgestrel was subjected to LC/MS/MS analysis using electro-spray ionization. The MS system was operated in the selected reaction monitoring mode. Chromatographic separation was performed on a Hypersil BDS C18 column (i.d. 2.1x50 mm, particle size 3 microm). The method had a chromatographic running time of 2.0 min and linear calibration curves over the concentration ranges of 0.25-90 ng/mL for levonorgestrel. The lower limit of quantification of the method was 0.25 ng/mL for levonorgestrel. The intra- and inter-batch precision was 3.7-10.2 and 5.1-12.9%, respectively, for all quality control samples at concentrations of 0.5, 6.0 and 45.0 ng/mL. These results indicate that the method was efficient with a simple preparation procedure and a very short running time (2.0 min) for levonorgestrel compared with those methods reported in the literature and had high selectivity, acceptable accuracy, precision and sensitivity. The validated LC/MS/MS method was successfully used for a bioequivalence study of two tablet formulations of levonorgestrel in healthy volunteers.  相似文献   

6.
The study of the metabolic fate of drugs is essential for the safety assessment of new compounds in the drug development process. However, the characterization and structural elucidation of metabolites from in vivo experiments is still a very challenging task. In this paper, we compare a two-dimensional liquid chromatography/mass spectrometry (LC/MS) approach using either a capillary LC/MS system or the recently introduced chip-based nanoelectrospray/MS system (Nanomate) as the second dimension for structural elucidation of metabolites by MS. More than 30 radioactive fractions of a chromatographic separation from a human urine sample were analyzed and 54 metabolites could be identified. The long persisting and stable nanoelectrospray enabled the search for unknown metabolites by precursor-ion scanning experiments followed by product-ion scanning experiments of potential metabolites using a quadrupole time-of-flight (qTOF) mass spectrometer. The number of fragments produced by nanoelectrospray with product-ion scanning was significantly higher compared to LC/MS experiments with in-source fragmentation. Therefore, the assignment of possible modifications in metabolites to certain moieties of the drug could be investigated with higher accuracy. The capillary LC/MS system for the second dimension was more sensitive in the case of low abundant metabolites. These metabolites could not be detected by direct nanoelectrospray infusion, which limits the application of the Nanomate for trace metabolites.  相似文献   

7.
A simple and rapid LC method was developed and validated for simultaneous estimation of nebivolol and amlodipine in a bi-layer tablet formulation. Efficient chromatographic separation was achieved on (USP L10) Hypersil BDS cyano, 5 μm, 250 mm × 4.6 mm column with simple mobile phase composition delivered in isocratic mode. The method had requisite accuracy, selectivity, sensitivity, robustness and precision to assay nebivolol and amlodipine in pharmaceutical dosage form. Degradation products resulting from the stress studies did not interfere with the detection of nebivolol and amlodipine, these peaks remained pure and thus proved to be stability indicating. The mass balance of the stressed sample was in the range 99.0–100.2% for amlodipine and 99.3–100.3% for nebivolol.  相似文献   

8.
The characterization of unknown impurities present in netilmicin and sisomicin by liquid chromatography (LC) coupled with mass spectrometry (MS) is described. The volatile ion-pairing agent trifluoroacetic acid (TFA) was used for the retention of the main compounds and their impurities on a reversed-phase (RP) C18 column, because they are highly hydrophilic and basic compounds. The method showed good separation between netilmicin and its four potential related substances prescribed in the European Pharmacopoeia, which were identified by comparison of their retention times with those of the reference substances. Furthermore, in total 16 unknown impurities in a netilmicin sample and six in a sisomicin sample with unknown identity were detected. The structures of the unknown compounds were deduced based on comparison of fragmentation patterns with those of the reference substances investigated in LC/MSn experiments by the use of electrospray ion trap mass spectrometry.  相似文献   

9.
This paper reports a liquid chromatographic/electrospray ionization mass spectrometric (LC/ESI-MS) method for profiling a wide range of structurally different sulfoconjugated compounds in urine and its application to the characterization of biomarkers for heavy metal toxicity in rat urine. Sulfoconjugates were first isolated by solid-phase extraction and the LC separation was performed on a reversed-phase column. Sulfoconjugates were detected in a triple-quadrupole mass spectrometer by simultaneously monitoring constant losses of 80 u (or 80 Th for doubly charged ions), precursors of m/z 80 (SO(3) (-*)) and precursors of m/z 97 (HSO4-). The ESI-MS detection conditions were optimized on dehydroepiandrosterone sulfate and estradiol sulfate and tested on other sulfoconjugates. The analysis of urine samples from humans and rats by using the developed method allowed the detection of about 15 peaks in each mode of detection. It was then applied to the investigation of heavy metal toxicity in rats. Comparative analysis of the chromatographic fingerprints of urine from control and uranium- and cadmium-treated rats showed several variations in the chromatographic pattern of the sulfoconjugates. Diagnostic m/z ratios were confirmed by analyzing individual urine samples and one of the observed variations seemed to be specific to uranium toxicity. The ion responsible for this variation has been identified as 4-ethylphenol sulfate by comparison of its chromatographic retention time and collision-induced dissociation mass spectra (MS(2) and MS(3) performed on a quadrupole ion trap instrument) with those of the synthesized compound.  相似文献   

10.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated to simultaneously determine gliclazide and metformin in human plasma using huperzine A as the internal standard (IS). After acetonitrile-induced protein precipitation of the plasma samples, gliclazide, metformin and the IS were subjected to LC/MS/MS analysis using electro-spray ionization (ESI). Chromatographic separation was performed on a Hypersil BDS C18 column (50 mm x 2.1 mm, i.d., 3 microm). The method had a chromatographic running time of 2.0 min and linear calibration curves over the concentration ranges of 10-10,000 ng ml(-1) for gliclazide and 7.8-4678.9 ng ml(-1) for metformin. The recoveries of the method were found to be 71-104%. The lower limits of quantification (LOQ) of the method were 10.0 and 7.8 ng ml(-1) for gliclazide and metformin, respectively. The intra- and interday precision was less than 15% for all quality control samples at concentrations of 100, 500, and 2000 ng ml(-1). The validated LC/MS/MS method has been used to study bioequivalence in healthy volunteers. These results indicate that the method was efficient with a very short running time (2.0 min) for metformin and gliclazide compared to the methods reported in the literature. The presented method had acceptable accuracy, precision and sensitivity and was used in clinical bioequivalence study.  相似文献   

11.
A rapid, sensitive and robust assay procedure using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for the determination of famotidine in human plasma and urine is described. Famotidine and the internal standard were isolated from plasma samples by cation-exchange solid-phase extraction with benzenesulfonic acid (SCX) cartridges. The urine assay used direct injection of a diluted urine sample. The chromatographic separation was accomplished by using a BDS Hypersil silica column with a mobile phase of acetonitrile-water containing trifluoroacetic acid. The MS/MS detection of the analytes was set in the positive ionization mode using electrospray ionization for sample introduction. The analyte and internal standard precursor-product ion combinations were monitored in the multiple-reaction monitoring mode. Assay calibration curves were linear in the concentration range 0.5--500 ng ml(-1) and 0.05--50 microg ml(-1) in plasma and urine, respectively. For the plasma assay, a 100 microl sample aliquot was subjected to extraction. To perform the urine assay, a 50 microl sample aliquot was used. The intra-day relative standard deviations at all concentration levels were <10%. The inter-day consistency was assessed by running quality control samples during each daily run. The limit of quantification was 0.5 ng ml(-1) in plasma and 0.05 microg ml(-1) in urine. The methods were utilized to support clinical pharmacokinetic studies in infants aged 0-12 months.  相似文献   

12.
Rapid drug metabolite profiling can be achieved using fast chromatographic separation and fast mass spectrometric scanning without compromising the separation efficiency. Fast chromatographic separations of drug and its metabolites can be achieved by eluting from a short narrow-bore guard cartridge column (20 x 2 mm I.D., 3 microns BDS Hypersil C8) at flow-rate of 1.0 ml/min and with a gradient volume greater than 90 column volumes. The need for chromatographic separation is important for automated data dependent multiple-stage mass spectrometry (MSn) experimentation. The total analysis time of 8 min permits profiling of metabolites in a 96-well plate in 13 h. The narrow chromatographic peaks resulting from the high flow-rate require the use of a mass spectrometer capable of fast scan speed due to the need to perform multiple MS experiments within the same chromatographic analysis. A method has been developed for screening potentially biologically active in vitro microsomal metabolites by affinity binding with a receptor. After separation by centrifugal ultrafiltration, the bound ligands are released and characterized by LC-MS. In vitro microsomal metabolites of tamoxifen, raloxifene and adatanserin were screened for potential biological activity using this method. The in vitro metabolites of tamoxifen captured by the receptor include N-demethyltamoxifen and three species of hydroxytamoxifen; these data are consistent with those from a conventional binding study and bioassay. In addition, both hydroxyraloxifene and dihydroxyraloxifene are also recognized by the receptor. The specificity of the molecular recognition process is illustrated by the absence of binding with control microsomal incubate and with adatanserin and its metabolites. Therefore, active metabolites can be rapidly profiled by fast LC, automated MSn, and receptor binding. This information can be obtained quickly and can add value to the drug discovery process.  相似文献   

13.
An ultra‐high‐performance liquid chromatography/electrospray ionisation tandem mass spectrometry system is described for the separation and characterisation of uroporphyrinogen, heptacarboxylic acid porphyrinogen, hexacarboxylic acid porphyrinogen, pentacarboxylic acid porphyrinogen and coproporphyrinogen. The separation was carried out on a 100 mm × 2.1 mm Thermo‐Hypersil BDS column (2.4 µm average particle size) by gradient elution with a mixture of acetonitrile, methanol and 1 mol/L aqueous ammonium acetate buffer, pH 5.16, as eluent. The fragmentation pattern of each compound was established by collision‐induced dissociation tandem mass spectrometry. The most characteristic fragmentation was ring opening at one of the four methylene bridges of the protonated porphyrinogen molecule followed by further cleavages of methylene bridges linking the four pyrrole rings at various points to give product ions with methylenepyrrolenine, methylene‐dipyrrolenine and methylene‐tripyrrolenine structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Recent advancements in mass spectrometry including data-dependent scanning and high-resolution mass spectrometry have aided metabolite profiling for non-radiolabeled xenobiotics. However, narrowing down a site of metabolism is often limited by the quality of the collision-induced dissociation (CID)-based precursor ion fragmentation. An alternative dissociation technique, higher energy collisional dissociation (HCD), enriches compound fragmentation and yields 'triple-quadrupole-like fragmentation'. Applying HCD along with CID and data-dependent scanning could enhance structural elucidation for small molecules. Liquid chromatography/multi-stage mass spectrometry (LC/MS(n) ) experiments with CID and HCD fragmentation were carried out for commercially available compounds on a hybrid linear ion trap orbital trap mass spectrometer equipped with accurate mass measurement capability. The developed method included stepped normalized collision energy (SNCE) parameters to enhance MS fragmentation without tuning for individual compounds. All the evaluated compounds demonstrated improved fragmentation under HCD as compared with CID. The results suggest that an LC/MS(n) method that incorporated both SNCE HCD- and CID-enabled precursor ion fragmentation afforded comprehensive structural information for the compounds under investigation. A dual collision cell approach was remarkably better than one with only CID MS(n) in an orbital trap. It is evident that such an acquisition method can augment the identification of unknown metabolites in drug discovery by improving fragmentation efficiency of both the parent compound and its putative metabolite(s).  相似文献   

15.
Different methods for solid phase extraction (SPE) of polar, organic compounds found in Elbe water were compared. Mass-spectrometric detection (MS) after liquid chromatographic separation (LC) or flow injection analysis (FIA) and thermospray ionization (TSP) was used to assess the concentration behaviour as well as the detection techniques. A selected compound was identified using tandem mass spectrometry (MS/MS) carrying out mixture analysis.  相似文献   

16.
Ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC) was utilized in tandem with negative-ion electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) for the analysis of native and chemically modified oligonucleotides. Separation was performed on a 1.0 x 50 mm column packed with porous C(18) sorbent with a particle size of 2.5 microm and an average pore diameter of 140 A. A method was developed which maximizes both chromatographic separation and mass spectrometric sensitivity using an optimized buffer system containing triethylamine and 1,1,1,3,3,3-hexafluoro-2-propanol with a methanol gradient. The ESI-TOFMS tuning parameters were also optimized in order to minimize in-source fragmentation and achieve the best sensitivity. Analyses of native, phosphorothioate, and guanine-rich oligonucleotides were performed by LC/MS. Detection limits were at sub-picomole levels with an average mass accuracy of 125 ppm. The described method allowed for the LC/MS analysis of oligonucleotides up to 110mer in length with little alkali cation adduction. Since sensitive detection of oligonucleotides was achieved with ultraviolet (UV) detection, we utilized a combination of UV-MS for quantitation (UV) and characterization (MS) of oligonucleotides and their failure sequence fragments/metabolites.  相似文献   

17.
A rapid, specific and reliable isocratic high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed and validated for the identification and characterization of stressed degradation products of metoprolol. Metoprolol, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and hydrolysis (acid and base) stress conditions. However, it was stable to thermal, neutral and photolysis stress conditions. A total of 14 degradation products were observed and the chromatographic separation of the drug and its degradation products was achieved on a C(18) column (4.6 × 250 mm, 5 μm). To characterize degradation products, initially the mass spectral fragmentation pathway of the drug was established with the help of MS/MS, MS(n) and accurate mass measurements. Similarly, fragmentation pattern and accurate masses of the degradation products were established by subjecting them to LC-MS/QTOF analysis. Structure elucidation of degradation products was achieved by comparing their fragmentation pattern with that of the drug. The degradation products DP(2) (m/z 153) and DP(14) (m/z 236) were matched with impurity B, listed in European Pharmacopoeia and British Pharmacopoeia, and impurity I, respectively. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision.  相似文献   

18.
A liquid chromatographic method was developed for the separation of six related triterpenoid saponins in Maesa balansae extracts with different purity, active against leishmaniasis. As stationary phase a Hypersil BDS C18 column (3 microm), 100 x 4.6 mm was used. The mobile phase was a mixture of methanol, acetonitrile, 5% (m/v) ammonium acetate, pH 6.5 and water. A linear gradient was developed for the analysis of crude extracts. An isocratic method was developed to analyze purified samples that mainly contained saponins 3 and 4, the most active saponins. The isocratic LC method was optimized and the robustness was evaluated with an experimental design. The method showed good selectivity, repeatability, linearity and sensitivity.  相似文献   

19.
The demand for clinical toxicology analytical methods for identifying drugs of abuse and medicinal drugs is steadily increasing. Structural elucidation of amino amide‐type local anesthetic drugs and their main metabolites by GC‐EI‐MS and LC‐ESI‐MS/MS is of great analytical challenge. These compounds exhibit only/mostly fragments/product ions representing the amine‐containing residue, while the aromatic amide moiety remains unidentified. This task becomes even more complicated when discrimination between positional isomers of such compounds is required. Here, we report the development of a derivatization procedure for the differentiation and structural elucidation of a mixture of local anesthetic drugs and their metabolites that possess tertiary and secondary amines in water and urine. A method based on two sequential “in‐vial” instantaneous derivatization processes at ambient temperature followed by LC‐ESI‐MS/MS analysis was developed. 2,2,2‐Trichloro‐1,1‐dimethylethyl chloroformate (TCDMECF) was utilized to selectively convert the secondary amines into their carbamate derivatives, followed by hydrogen peroxide addition to produce the corresponding tertiary amine oxides. The resulting derivatives exhibited rich fragmentation patterns, enabling improved structural elucidation of the original compounds. The developed method was successfully applied to the differentiation and structural elucidation of prilocaine and its four positional isomers, which all possess similar GC and LC retention times and four of them exhibit almost identical EI‐MS and ESI‐MS/MS spectra, enabling their structural elucidation in a single LC‐ESI‐MS/MS analysis. The developed technique is fast and simple and enables discrimination between isomers based on different diagnostic ions/fragmentation patterns.  相似文献   

20.
The present study describes the development and validation of a selective liquid chromatographic (LC) method for the analysis of tenofovir disoproxil fumarate (TDF) and its related substances. The gradient method uses a base deactivated C18 column (Hypersil BDS column; 25 cm×4.6 mm I.D.) maintained at a temperature of 30°C. The mobile phases consist of acetonitrile, tetrabutylammonium/phosphate buffer pH 6.0 and water: (A; 2:20:78 v/v/v) and (B; 65:20:15 v/v/v). The flow rate is 1.0 mL/min and UV detection is performed at 260 nm. Good separation of TDF and 21 impurities was achieved. A system suitability test (SST) to check the quality of separation is also specified. The developed method was further validated with respect to robustness, precision, sensitivity and linearity. The method is proved to be robust, precise, sensitive and linear between 0.1 μg/mL and 0.15 mg/mL. The limit of detection and limit of quantification are 0.03 and 0.1 μg/mL, respectively. The method was successfully applied to the quantification of related substances and assay of commercial TDF samples (bulk substances and tablets).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号