首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have implemented the combined quantum mechanical (QM)/molecular mechanical (MM) molecular dynamics (MD) simulations of alanine dipeptide in water along with the polarizable and nonpolarizable classical MD simulations with different models of water. For the QM/MM MD simulation, the alanine dipeptide is treated with the AM1 or PM3 approximations and the fluctuating solute dipole moment is calculated by the Mulliken population analysis. For the classical MD simulations, the solute is treated with the polarizable or nonpolarizable AMBER and polarizable CHARMM force fields and water is treated with the TIP3P, TIP4P, or TIP5P model. It is found that the relative populations of right-handed alpha-helix and extended beta and P(II) conformations in the simulation trajectory strongly depend on the simulation method. For the QM/MM MD simulations, the PM3/MM shows that the P(II) conformation is dominant, whereas the AM1/MM predicts that the dominant conformation is alpha(R). Polarizable CHARMM force field gives almost exclusively P(II) conformation and other force fields predict that both alpha-helical and extended (beta and P(II)) conformations are populated with varying extents. Solvation environment around the dipeptide is investigated by examining the radial distribution functions and numbers and lifetimes of hydrogen bonds. Comparing the simulated IR and vibrational circular dichroism spectra with experimental results, we concluded that the dipeptide adopts the P(II) conformation and PM3/MM, AMBER03 with TIP4P water, and AMBER polarizable force fields are acceptable for structure determination of the dipeptide considered in this paper.  相似文献   

2.
The solvent effect on the absorption spectra of coumarin 120 (C120) in water was studied utilizing the combined quantum mechanical∕molecular mechanical (QM∕MM) method. In molecular dynamics (MD) simulation, a new sampling scheme was introduced to provide enough samples for both solute and solvent molecules to obtain the average physical properties of the molecules in solution. We sampled the structure of the solute and solvent molecules separately. First, we executed a QM∕MM MD simulation, where we sampled the solute molecule in solution. Next, we chose random solute structures from this simulation and performed classical MD simulation for each chosen solute structure with its geometry fixed. This new scheme allowed us to sample the solute molecule quantum mechanically and sample many solvent structures classically. Excitation energy calculations using the selected samples were carried out by the generalized multiconfigurational perturbation theory. We succeeded in constructing the absorption spectra and realizing the red shift of the absorption spectra found in polar solvents. To understand the motion of C120 in water, we carried out principal component analysis and found that the motion of the methyl group made the largest contribution and the motion of the amino group the second largest. The solvent effect on the absorption spectrum was studied by decomposing it in two components: the effect from the distortion of the solute molecule and the field effect from the solvent molecules. The solvent effect from the solvent molecules shows large contribution to the solvent shift of the peak of the absorption spectrum, while the solvent effect from the solute molecule shows no contribution. The solvent effect from the solute molecule mainly contributes to the broadening of the absorption spectrum. In the solvent effect, the variation in C-C bond length has the largest contribution on the absorption spectrum from the solute molecule. For the solvent effect on the absorption spectrum from the solvent molecules, the solvent structure around the amino group of C120 plays the key role.  相似文献   

3.
The infrared(IR) spectra of the N-methylacetamide molecule in water are calculated by using the MD simulation with high-level QM/MM corrections. The B3LYP and MP2 levels with 6-311++G** basis set are used for the QM region, respectively. Our results show all IR spectra at the B3LYP level are well consistent with the corresponding MP2 results. A dynamical charge fluctuation is observed for each atom along the simulation trajectories due to the electrostatic polarization(EP) effects from surrounding solvent environment. We find that the QM/MM corrected IR spectra satisfactorily reproduce the experimental vibrational features of amide I–III modes.  相似文献   

4.
Nitrile- and thiocyanate-derivatized amino acids have been found to be useful IR probes for investigating their local electrostatic environments in proteins. To shed light on the CN stretch frequency shift and spectral lineshape change induced by interactions with hydrogen-bonding solvent molecules, we carried out both classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations for MeCN and MeSCN in water. These QM/MM and conventional force field MD simulation results were found to be inconsistent with the experimental results as well as with the high-level ab initio calculation results of MeCN-water and MeSCN-water potential energies. Thus, a new set of atomic partial charges of MeCN and MeSCN is obtained. By using the MD simulation trajectories and the electrostatic potential model recently developed, the CN and SCN stretching mode frequency trajectories were obtained and used to simulate the IR spectra. The C[Triple Bond]N frequency blueshifts of MeCN and MeSCN in water are estimated to be 9.0 and 1.9 cm(-1), respectively, in comparison with those of gas phase values. These values are found to be in reasonable agreement with the experimentally measured IR spectra of MeCN, MeSCN, beta-cyano-L-alanine, and cyanylated cysteine in water and other polar solvents.  相似文献   

5.
6.
We present an alternative approach to determine "density-dependent property"-derived charges for molecules in the condensed phase. In the case of a solution, it is essential to take into consideration the electron polarization of molecules in the active site of this system. The solute and solvent molecules in this site have to be described by a quantum mechanical technique and the others are allowed to be treated by a molecular mechanical method (QM/MM scheme). For calculations based on this scheme, using the forces and interaction energy as density-dependent property our charges from interaction energy and forces (CHIEF) approach can provide the atom-centered charges on the solute atoms. These charges reproduce well the electrostatic potentials around the solvent molecules and present properly the picture of the electron density of the QM subsystem in the solution system. Thus, the CHIEF charges can be considered as the atomic charges under the conditions of the QM/MM simulation, and then enable one to analyze electrostatic interactions between atoms in the QM and MM regions. This approach would give a view of the QM nuclei and electrons different from the conventional methods.  相似文献   

7.
The performance of semiempirical molecular-orbital methods--MNDO, MNDO-d, AM1, RM1, PM3 and PM6--in describing halogen bonding was evaluated, and the results were compared with molecular mechanical (MM) and quantum mechanical (QM) data. Three types of performance were assessed: (1) geometrical optimizations and binding energy calculations for 27 halogen-containing molecules complexed with various Lewis bases (Two of the tested methods, AM1 and RM1, gave results that agree with the QM data.); (2) charge distribution calculations for halobenzene molecules, determined by calculating the solvation free energies of the molecules relative to benzene in explicit and implicit generalized Born (GB) solvents (None of the methods gave results that agree with the experimental data.); and (3) appropriateness of the semiempirical methods in the hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme, investigated by studying the molecular inhibition of CK2 protein by eight halobenzimidazole and -benzotriazole derivatives using hybrid QM/MM molecular-dynamics (MD) simulations with the inhibitor described at the QM level by the AM1 method and the rest of the system described at the MM level. The pure MM approach with inclusion of an extra point of positive charge on the halogen atom approach gave better results than the hybrid QM/MM approach involving the AM1 method. Also, in comparison with the pure MM-GBSA (generalized Born surface area) binding energies and experimental data, the calculated QM/MM-GBSA binding energies of the inhibitors were improved by replacing the G(GB,QM/MM) solvation term with the corresponding G(GB,MM) term.  相似文献   

8.
9.
A new formalism for quantum mechanical / molecular mechanical (QM/MM) dynamics of chemical species in solution has been developed, which does not require the construction of any other potential functions except those for solvent–solvent interactions, maintains all the advantages of large simulation boxes and ensures the accuracy of ab initio quantum mechanics for all forces acting in the chemically most relevant region. Interactions between solute and more distant solvent molecules are incorporated by a dynamically adjusted force field corresponding to the actual molecular configuration of the simulated system and charges derived from the electron distribution in the solvate. The new formalism has been tested with some examples of hydrated ions, for which accurate conventional ab initio QM/MM simulations have been previously performed, and the comparison shows equivalence and in some aspects superiority of the new method. As this simulation procedure does not require any tedious construction of two-and three-body interaction potentials inherent to conventional QM/MM approaches, it opens the straightforward access to ab initio molecular dynamics simulations of any kind of solutes, such as metal complexes and other composite species in solution.  相似文献   

10.
11.
The free energy change associated with the isomerization reaction of glycine in water solution has been studied by a hybrid quantum mechanical/molecular mechanical (QM/MM) approach combined with the theory of energy representation (QM/MM-ER) recently developed. The solvation free energies for both neutral and zwitterionic form of glycine have been determined by means of the QM/MM-ER simulation. The contributions of the electronic polarization and the fluctuation of the QM solute to the solvation free energy have been investigated. It has been found that the contribution of the density fluctuation of the zwitterionic solute is estimated as -4.2 kcal/mol in the total solvation free energy of -46.1 kcal/mol, while that of the neutral form is computed as -3.0 kcal/mol in the solvation free energy of -15.6 kcal/mol. The resultant free energy change associated with the isomerization of glycine in water has been obtained as -7.8 kcal/mol, in excellent agreement with the experimental data of -7.3 or -7.7 kcal/mol, implying the accuracy of the QM/MM-ER approach. The results have also been compared with those computed by other methodologies such as the polarizable continuum model and the classical molecular simulation. The efficiency and advantage of the QM/MM-ER method has been discussed.  相似文献   

12.
The authors present a method based on a linear response theory that allows one to optimize the geometries of quantum mechanical/molecular mechanical (QM/MM) systems on the free energy surfaces. Two different forms of linear response free energy functionals are introduced, and electronic wave functions of the QM region, as well as the responses of electrostatic and Lennard-Jones potentials between QM and MM regions, are self-consistently determined. The covariant matrix relating the QM charge distribution to the MM response is evaluated by molecular dynamics (MD) simulation of the MM system. The free energy gradients with respect to the QM atomic coordinates are also calculated using the MD trajectory results. They apply the present method to calculate the free energy profiles of Menshutkin-type reaction of NH3 with CH3Cl and Claisen rearrangement of allyl vinyl ether in aqueous solution. For the Menshutkin reaction, the free energy profile calculated with the modified linear response free energy functional is in good agreement with that by the free energy perturbation calculations. They examine the nonequilibrium solvation effect on the transmission coefficient and the kinetic isotope effect for the Claisen rearrangement.  相似文献   

13.
Classical molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) MD simulations have been performed to investigate the structural and dynamical properties of the Tl(III) ion in water. A six-coordinate hydration structure with a maximum probability of the Tl-O distance at 2.21 A was observed, which is in good agreement with X-ray data. The librational and vibrational spectra of water molecules in the first hydration shell are blue-shifted compared with those of pure liquid water, and the Tl-O stretching force constant was evaluated as 148 Nm(-1). Both structural and dynamical properties show a distortion of the first solvation shell structure. The second shell ligands' mean residence time was determined as 12.8 ps. The Tl(III) ion can be classified as "structure forming" ion; the calculated hydration energy of -986 +/- 9 kcal mol agrees well with the experimental value of -986 kcal mol.  相似文献   

14.
Various quantum mechanical/molecular mechanical (QM/MM) geometry optimizations starting from an x-ray crystal structure and from the snapshot structures of constrained molecular dynamics (MD) simulations have been performed to characterize two dynamically stable active site structures of phosphodiesterase-5 (PDE5) in solution. The only difference between the two PDE5 structures exists in the catalytic, second bridging ligand (BL2) which is HO- or H2O. It has been shown that, whereas BL2 (i.e. HO-) in the PDE5(BL2 = HO-) structure can really bridge the two positively charged metal ions (Zn2+ and Mg2+), BL2 (i.e. H2O) in the PDE5(BL2 = H2O) structure can only coordinate Mg2+. It has been demonstrated that the results of the QM/MM geometry optimizations are remarkably affected by the solvent water molecules, the dynamics of the protein environment, and the electronic embedding charges of the MM region in the QM part of the QMM/MM calculation. The PDE5(BL2 = H2O) geometries optimized by using the QM/MM method in different ways show strong couplings between these important factors. It is interesting to note that the PDE5(BL2 = HO-) and PDE5(BL2 = H2O) geometries determined by the QM/MM calculations neglecting these three factors are all consistent with the corresponding geometries determined by the QM/MM calculations that account for all of these three factors. These results suggest the overall effects of these three important factors on the optimized geometries can roughly cancel out. However, the QM/MM calculations that only account for some of these factors could lead to considerably different geometries. These results might be useful also in guiding future QM/MM geometry optimizations on other enzymes.  相似文献   

15.
Electronic spectra of guanine in the gas phase and in water were studied by quantum mechanical/molecular mechanical (QM/MM) methods. Geometries for the excited‐state calculations were extracted from ground‐state molecular dynamics (MD) simulations using the self‐consistent‐charge density functional tight binding (SCC‐DFTB) method for the QM region and the TIP3P force field for the water environment. Theoretical absorption spectra were generated from excitation energies and oscillator strengths calculated for 50 to 500 MD snapshots of guanine in the gas phase (QM) and in solution (QM/MM). The excited‐state calculations used time‐dependent density functional theory (TDDFT) and the DFT‐based multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke, in combination with two basis sets. Our investigation covered keto‐N7H and keto‐N9H guanine, with particular focus on solvent effects in the low‐energy spectrum of the keto‐N9H tautomer. When compared with the vertical excitation energies of gas‐phase guanine at the optimized DFT (B3LYP/TZVP) geometry, the maxima in the computed solution spectra are shifted by several tenths of an eV. Three effects contribute: the use of SCC‐DFTB‐based rather than B3LYP‐based geometries in the MD snapshots (red shift of ca. 0.1 eV), explicit inclusion of nuclear motion through the MD snapshots (red shift of ca. 0.1 eV), and intrinsic solvent effects (differences in the absorption maxima in the computed gas‐phase and solution spectra, typically ca. 0.1–0.3 eV). A detailed analysis of the results indicates that the intrinsic solvent effects arise both from solvent‐induced structural changes and from electrostatic solute–solvent interactions, the latter being dominant. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

16.
We present an extensible interface between the AMBER molecular dynamics (MD) software package and electronic structure software packages for quantum mechanical (QM) and mixed QM and classical molecular mechanical (MM) MD simulations within both mechanical and electronic embedding schemes. With this interface, ab initio wave function theory and density functional theory methods, as available in the supported electronic structure software packages, become available for QM/MM MD simulations with AMBER. The interface has been written in a modular fashion that allows straight forward extensions to support additional QM software packages and can easily be ported to other MD software. Data exchange between the MD and QM software is implemented by means of files and system calls or the message passing interface standard. Based on extensive tests, default settings for the supported QM packages are provided such that energy is conserved for typical QM/MM MD simulations in the microcanonical ensemble. Results for the free energy of binding of calcium ions to aspartate in aqueous solution comparing semiempirical and density functional Hamiltonians are shown to demonstrate features of this interface. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H(2)O)(6)(2+/3+) and Ru(H(2)O)(6)(2+/3+). The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.  相似文献   

18.
19.
The aqueous solvation free energies of ionized molecules were computed using a coupled quantum mechanical and molecular mechanical (QM/MM) model based on the AM1, MNDO, and PM3 semiempirical molecular orbital methods for the solute molecule and the TIP3P molecular mechanics model for liquid water. The present work is an extension of our model for neutral solutes where we assumed that the total free energy is the sum of components derived from the electrostatic/polarization terms in the Hamiltonian plus an empirical “nonpolar” term. The electrostatic/polarization contributions to the solvation free energies were computed using molecular dynamics (MD) simulation and thermodynamic integration techniques, while the nonpolar contributions were taken from the literature. The contribution to the electrostatic/polarization component of the free energy due to nonbonded interactions outside the cutoff radii used in the MD simulations was approximated by a Born solvation term. The experimental free energies were reproduced satisfactorily using variational parameters from the vdW terms as in the original model, in addition to a parameter from the one-electron integral terms. The new one-electron parameter was required to account for the short-range effects of overlapping atomic charge densities. The radial distribution functions obtained from the MD simulations showed the expected H-bonded structures between the ionized solute molecule and solvent molecules. We also obtained satisfactory results by neglecting both the empirical nonpolar term and the electronic polarization of the solute, i.e., by implementing a nonpolarization model. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1028–1038, 1999  相似文献   

20.
We describe a system setup that is applicable to all species in the catalytic cycle of cytochrome P450(cam). The chosen procedure starts from the X-ray coordinates of the ferrous dioxygen complex and follows a protocol that includes the careful assignment of protonation states, comparison between different conceivable hydration schemes, and system preparation through a series of classical minimizations and molecular dynamics (MD) simulations. The resulting setup was validated by quantum mechanical/molecular mechanical (QM/MM) calculations on the resting state, the pentacoordinated ferric and ferrous complexes, Compound I, the transition state and hydroxo intermediate of the C--H hydroxylation reaction, and the product complex. The present QM/MM results are generally consistent with those obtained previously with individual setups. Concerning hydration, we find that saturating the protein interior with water is detrimental and leads to higher structural flexibility and catalytically inefficient active-site geometries. The MD simulations favor a low water density around Asp251 that facilitates side chain rotation of protonated Asp251 during the conversion of Compound 0 to Compound I. The QM/MM results for the two preferred hydration schemes (labeled SE-1 and SE-4) are similar, indicating that slight differences in the solvation close to the active site are not critical as long as camphor and the crystallographic water molecules preserve their positions in the experimental X-ray structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号