首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to develop a trypsin-based micro-immobilized enzyme reactor prepared on a monolithic ethylenediamine BIA Separations CIM (convective interaction media) minidisk. The micro-immobilized enzyme reactor (IMER) was integrated in a liquid chromatography system hyphenated to electrospray ionization tandem mass spectrometry to carry out on-line protein digestion and identification. The performance of this IMER was compared with that obtained using a previously developed bioreactor prepared on a conventional CIM ethylenediamine disk and with that of the commercially available Poroszyme immobilized trypsin cartridge. In this work, we showed how different proteins were identified with good recoveries using a digestion time of 10 min only.  相似文献   

2.
Sim TS  Kim EM  Joo HS  Kim BG  Kim YK 《Lab on a chip》2006,6(8):1056-1061
We have carried out a simultaneous thermal denaturation and trypsin digestion of proteins using a temperature-controllable microreactor. This is a simple and rapid sample preparation technique for use before matrix-assisted laser desorption ionization time-of-flight mass spectrometry. In contrast to a conventional sample preparation method, which involves several chemical treatments, our sample preparation was performed using only trypsin digestion with the thermal denaturation of the target protein. Optimization of the reactor operational parameters for trypsin digestion using a temperature-controllable microreactor was carried out. The entire trypsin digestion procedure took about 11 min, and consisted of 1 min for the thermal denaturation of the sample protein (3 microl, 0.2 microM) at 85 degrees C, and 10 min for digestion of the protein at 37 degrees C. The resulting sequence coverage ranged from 24% to 57%, which was sufficient for practical protein identification.  相似文献   

3.
We describe a two-dimensional capillary electrophoresis system that incorporates a replaceable enzymatic microreactor for on-line protein digestion. In this system, trypsin is immobilized on magnetic beads. At the start of each experiment, old beads are flushed to waste and replaced with a fresh plug of beads, which is captured by a pair of magnets at the distal tip of the first capillary. For analysis, proteins are separated in the first capillary. A fraction is then parked in the reactor to create peptides. Digested peptides are periodically transferred to the second capillary for separation; a fresh protein fraction is simultaneously moved to the reactor for digestion. An electrospray interface is used to introduce peptides into a mass spectrometer for analysis. This procedure is repeated for several dozen fractions under computer control. The system was demonstrated by the separation and digestion of insulin chain b oxidized and β-casein as model proteins.  相似文献   

4.
Yao C  Qi L  Hu W  Wang F  Yang G 《Analytica chimica acta》2011,692(1-2):131-137
A new kind of immobilized trypsin reactor based on sub-micron skeletal polymer monolith has been developed. Covalent immobilization of trypsin on this support was performed using the epoxide functional groups in either a one- or a multi-step reaction. The proteolytic activity of the immobilized trypsin was measured by monitoring the formation of N-α-benzoyl-L-arginine (BA) which is the digestion product of a substrate N-α-benzoyl-L-arginine ethyl ester (BAEE). Results showed that the digestion speed was about 300 times faster than that performed in free solution. The performance of such an enzyme reactor was further demonstrated by digesting protein myoglobin. It has been found that the protein digestion could be achieved in 88 s at 30°C, which is comparable to 24 h digestion in solution at 37°C. Furthermore, the immobilized trypsin exhibits increased stability even after continuous use compared to that in free solution. The present monolithic enzyme-reactor provides a promising platform for the proteomic research.  相似文献   

5.
A study was initiated to construct a micro-reactor for protein digestion based on trypsin-coated fused-silica capillaries. Initially, surface plasmon resonance was used both for optimization of the surface chemistry applied in the preparation and for monitoring the amount of enzyme that was immobilized. The highest amount of trypsin was immobilized on dextran-coated SPR surfaces which allowed the covalent coupling of 11 ng mm−2 trypsin. Fused-silica capillaries were modified in a similar manner and the resulting open-tubular trypsin-reactors having a pH optimum of pH 8.5, display a high activity when operated at 37 °C and are stable for at least two weeks when used continuously. Trypsin auto-digestion fragments, sample carry-over, and loss of signal due to adsorption of the protein were not observed. On-line digestion without prior protein denaturation, followed by micro-LC separation and photodiode array detection, was tested with horse-heart cytochrome C and horse skeletal-muscle myoglobin. The complete digestion of 20 pmol μL−1 horse cytochrome C was observed when the average residence time of the protein sample in a 140 cm ×50 μm capillary immobilized enzyme reactor (IMER) was 165 s. Mass spectrometric identification of the injected protein on the basis of the tryptic peptides proved possible. Protein digestion was favorable with respect to reaction time and fragments formed when compared with other on-line and off-line procedures. These results and the easy preparation of this micro-reactor provide possibilities for miniaturized enzyme-reactors for on-line peptide mapping and inhibitor screening.  相似文献   

6.
Al-Lawati H  Watts P  Welham KJ 《The Analyst》2006,131(5):656-663
A highly efficient protein digestion device has been fabricated using commercially available immobilized trypsin on agarose beads, packed into a silica capillary and connected either directly to an electrospray mass spectrometer via a 'microtight T' connector, from which aqueous acetic acid (0.2%) was pumped, or via a monolithic column connected to the mass spectrometer ion source. Six proteins with molecular mass ranging from 2848 to 77703 Da were digested completely using this system. In the second set of experiments a short monolithic separation column was placed after the immobilized trypsin capillary and partial separation of the generated peptides was obtained. The detection limits were increased from the micromol to pmol range by utilization of this separation column. Gradient elution, using a binary HPLC pump and a flow splitter, was used to optimize the peptide separation. This provided significantly enhanced resolution of the tryptic peptides but increased the analysis time to 30 minutes.  相似文献   

7.
A microfluidic device is described in which an electrospray interface to a mass spectrometer is integrated with a capillary electrophoresis channel, an injector and a protein digestion bed on a monolithic substrate. A large channel, 800 microm wide, 150 microm deep and 15 mm long, was created to act as a reactor bed for trypsin immobilized on 40-60 microm diameter beads. Separation was performed in channels etched 10 microm deep, 30 microm wide and about 45 mm long, feeding into a capillary, attached to the chip with a low dead volume coupling, that was 30 mm in length, with a 50 microm i.d. and 180 microm o.d. Sample was pumped through the reactor bed at flow rates between 0.5 and 60 microL/min. The application of this device for rapid digestion, separation and identification of proteins is demonstrated for melittin, cytochrome c and bovine serum albumin (BSA). The rate and efficiency of digestion was related to the flow rate of the substrate solution through the reactor bed. A flow rate of 1 or 0.5 microL/min was found adequate for complete consumption of cytochrome c or BSA, corresponding to a digestion time of 3-6 min at room temperature. Coverage of the amino acid sequence ranged from 92% for cytochrome c to 71% for BSA, with some missed cleavages observed. Melittin was consumed within 5 s. In contrast, a similar extent of digestion of melittin in a cuvet took 10-15 min. The kinetic limitations associated with the rapid digestion of low picomole levels of substrate were minimized using an integrated digestion bed with hydrodynamic flow to provide an increased ratio of trypsin to sample. This chip design thus provides a convenient platform for automated sample processing in proteomics applications.  相似文献   

8.
In this article, we developed a membrane-based enzyme micro-reactor by directly using commercial polystyrene–divinylbenzene cation–exchange membrane as the support for trypsin immobilization via electrostatic and hydrophobic interactions and successfully applied it for protein digestion. The construction of the reactor can be simply achieved by continuously pumping trypsin solution through the reactor for only 2 min, which was much faster than the other enzyme immobilization methods. In addition, the membrane reactor could be rapidly regenerated within 35 min, resulting in a “new” reactor for the digestion of every protein sample, completely eliminating the cross-interference of different protein samples. The amount and the activity of immobilized trypsin were measured, and the repeatability of the reactor was tested, with an RSD of 3.2% for the sequence coverage of cytochrome c in ten digestion replicates. An integrated platform for protein analysis, including online protein digestion and peptide separation and detection, was established by coupling the membrane enzyme reactor with liquid chromatography–quadrupole time-of-flight mass spectrometry. The performance of the platform was evaluated using cytochrome c, myoglobin, and bovine serum albumin, showing that even in the short digestion time of several seconds the obtained sequence coverages was comparable to or higher than that with in-solution digestion. The system was also successfully used for the analysis of proteins from yeast cell lysate.  相似文献   

9.
The preparation and characterization of a new trypsin-based bioreactor is here described for on-line protein digestion and peptide analysis. Trypsin was immobilized on an epoxy-modified silica monolithic support with a single reaction step and the amount of immobilized enzyme was found to be 66.07 mg (+/-11.75 S.D.)/column (n = 6). The bioreactor was coupled through a switching valve to an analytical column for the on-line digestion, peptide separation and identification of test proteins by ESI-MS-MS. The influence of various parameters (flow rate, temperature, buffer pH and molarity, etc.) on enzymatic activity was investigated by an experimental design and the mostly significant factor was found to be the flow rate. The efficacy of the reported on-line bioreactor for tryptic mapping is reported for somatostatin and myoglobin, selected as model compounds. Tryptic peptide maps obtained by on-line digestion of myoglobin were compared to those obtained by traditional off-line digestion. Sequence coverage obtained with the on-line protocol (21 peptides, 75.16% coverage of myoglobin sequence) was found to be comparable to the one obtained with the off-line protocol (18 peptides, 76.47% coverage). Sensitivity for myoglobin digestion and identification was 0.1 mg/ml. The reproducibily of the peptide maps in terms of retention time was from 1.53 to 4.31%, R.S.D.  相似文献   

10.
Off-line digestion of proteins using immobilized trypsin beads is studied with respect to the format of the digestion reactor, the digestion conditions, the comparison with in-solution digestion and its use in complex biological samples. The use of the filter vial as the most appropriate digestion reactor enables simple, efficient and easy-to-handle off-line digestion of the proteins on trypsin beads. It was shown that complex proteins like bovine serum albumin (BSA) need much longer time (89 min) and elevated temperature (37 degrees C) to be digested to an acceptable level compared to smaller proteins like cytochrome c (5 min, room temperature). Comparing the BSA digestion using immobilized trypsin beads with conventional in-solution digestion (overnight at 37 degrees C), it was shown that comparable results were obtained with respect to sequence coverage (>90%) and amount of missed cleavages (in both cases around 20 peptides with 1 or 2 missed cleavages were detected). However, the digestion using immobilized trypsin beads was considerable less time consuming. Good reproducibility and signal intensities were obtained for the digestion products of BSA in a complex urine sample. In addition to this, peptide products of proteins typically present in urine were identified.  相似文献   

11.
In this study, methodology was developed for on-line and miniaturized enzymatic digestion with liquid chromatographic (LC) separation and mass spectrometric (MS) detection. A packed capillary LC-MS system was combined with on-line trypsin cleavage of a model protein, lactate dehydrogenase, to provide an efficient system for peptide mapping. The protein was injected onto an enzymatic capillary reactor and the resulting peptides were efficiently trapped on a capillary trapping column. Different trapping columns were evaluated to achieve a high binding capacity for the peptides generated in the enzyme reactor. The peptides were further eluted from the pre-column and separated on an analytical capillary column by a buffer more suitable for the following an electrospray ionisation (ESI) MS process. An important aspect of the on-line approach was the desalting of peptides performed in the trapping column to avoid detrimental signal suppression in the ESI process. The developed on-line system was finally compared to a classical digestion in solution, with reference to peptide sequence coverage and sensitivity. It was shown that the on-line system gave more than 100% higher peptide sequence coverage than traditional digestion methods.  相似文献   

12.
An automated proteolytic digestion bioreactor and droplet deposition system was constructed with a plastic microfluidic device for off-line interfacing to matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The microfluidic chips were fabricated in poly(methyl methacrylate) (PMMA), using a micromilling machine and incorporated a bioreactor, which was 100 microm wide, 100 microm deep, and possessed a 4 cm effective channel length (400 nL volume). The chip was operated by pressure-driven flow and mounted on a robotic fraction collector system. The PMMA bioreactor contained surface immobilized trypsin, which was covalently attached to the UV-modified PMMA surface using coupling reagents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and hydroxysulfosuccinimide (sulfo-NHS). The digested peptides were mixed with a MALDI matrix on-chip and deposited as discrete spots on MALDI targets. The bioreactor provided efficient digestion of a test protein, cytochrome c, at a flow rate of 1 microL/min, producing a reaction time of approximately 24 s to give adequate sequence coverage for protein identification. Other proteins were also evaluated using this solid-phase bioreactor. The efficiency of digestion was evaluated by monitoring the sequence coverage, which was 64%, 35%, 58%, and 47% for cytochrome c, bovine serum albumin (BSA), myoglobin, and phosphorylase b, respectively.  相似文献   

13.
Electrospray ionization mass spectrometry (ESI/MS) affords a rapid and sensitive technique for determining peptides produced by the enzymatic digestion of phosphoroteins. When coupled with on-line immobilized metal-ion affinity chromatography (IMAC), the combmation allows separation and mass spectrometric identification of phosphorylated and nonphosphorylated peptides. In this study, the feasibility and general applicability of on-line IMAC/ESI/MS is investigated by using immobilized ferric ions for selective chelation of several phosphotyrosine and phosphoserine peptides. The sensitivity and practicality of the technique for phosphoproteins are demonstrated via the analysis of 30 pmol (~0.7 μg) of bovine β-casein purified by sodium dodecylsulfate-polyacrylamide gel electrophoresis, electroblotted onto a polyvinylidene difluoride membrane, and digested in situ with trypsin. It is observed that on-line IMAC/ESI/MS suffers less from sample losses than experiments performed off-line, suggesting that the limiting factors in sensitivity for this technique are the purification procedures and sample handling rather than the IMAC and mass spectrometry. Thus, the ability to inject the tryptic digest of an electroblotted protein directly onto the column without buffer exchange and to analyze the eluent directly via on-line coupling of the IMAC column to the mass spectrometer greatly reduces sample losses incurred through sample handling and provides a convenient method for analyzing phosphopeptides at low levels.  相似文献   

14.
Bao H  Chen Q  Zhang L  Chen G 《The Analyst》2011,136(24):5190-5196
In this report, trypsin was immobilized in the layer-by-layer (LBL) coating of graphene oxide (GO) and chitosan on a piece of glass fiber to fabricate microchip bioreactor for efficient proteolysis. LBL deposition driven by electrostatic forces easily took place on the surface of the glass fiber, providing mild environmental conditions so that the denaturation and autolysis of the immobilized trypsin was minimized. Prior to use, a piece of the prepared trypsin-immobilized glass fiber was inserted into the channel of a microchip to form a core-changeable bioreactor. The novel GO-based bioreactor can be regenerated by changing its fiber core. The feasibility and performance of the unique bioreactor were demonstrated by the tryptic digestion of bovine serum albumin, myoglobin, cytochrome c, and hemoglobin and the digestion time was significantly reduced to less than 10 s. The obtained digests were identified by MALDI-TOF MS. The digestion performance of the core-changeable GO-based microchip bioreactor was comparable to that of 12-h in-solution tryptic digestion. The novel microchip bioreactor is simple and efficient, offering great promise for high-throughput protein identification.  相似文献   

15.
《Analytical letters》2012,45(4):707-719
The proteolytic enzyme trypsin was chemically immobilized to an amine-functionalized sol-gel using adipoyl chloride under nonaqueous conditions and a nitrogen atmosphere. In the synthesis of the sol-gel, tetraethyl orthosilicate (TEOS), and 3-(2-aminoethylamino) propyldimethoxymethylsilane (AEAPMS) (50:50, v/v) were used, which provided convenient physical and chemical conditions to maintain catalytic activity of immobilized trypsin molecules for the digestion of proteins in proteomics applications. Bovine serum albumin was used as a model protein to perform enzymatic digestion using the trypsin immobilized sol-gel. The resulting peptides were analyzed by matrix-assisted laser desorption/ionization-mass spectrometry to evaluate the digestion performance and specificity of the sol-gel material. The trypsin immobilized sol-gel showed superior enzymatic activity in protein digestion and it was determined that the sol-gel material could be repeatedly used at least 25 times without significant activity loss in long-term use. Additionally, autocatalysis was prevented by immobilization of trypsin. The peptide digest having the highest purity was obtained for protein identification studies.  相似文献   

16.
Based on a previous study of protein digestion inside the nanoreactor channels of the mesoporous molecular sieve silicate SBA-15 (Chem. Eur. J. 2005, 11: 5391), we have developed a highly efficient enrichment and subsequent tryptic digestion of proteins in SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer (MALDI-TOF/TOF) peptide mapping. The performance of the method is exemplified with myoglobin and cytochrome c. First, protein adsorption isotherms for two standard proteins with a range of initial concentration of proteins were investigated at room temperature. The results revealed that the kinetic adsorption rate of a protein within SBA-15 was independent of initial protein concentration, and a 15-min protein enrichment within SBA-15 could be enough for protein identification in biological samples. It was noticed that no washing steps were needed to avoid protein loss due to desorption from the mesochannels into solution. Second, protein digestion inside the channels of SBA-15 was also optimized. After adsorption of proteins into SBA-15 in 15 min, the trypsin solution (pH 8) was directly added to the SBA-15 beads with immobilized proteins by centrifugation, and then the digestion was performed for 15 min at 37 degrees C. It was observed that a higher peptide sequence covering of 98% for myoglobin was obtained by MALDI-TOF/TOF analysis, compared to in-solution digestion. So the protein digestion inside SBA-15 was proved to be significantly faster and yielded a better sequence coverage. The new procedure allows for rapid protein enrichment and digestion inside SBA-15, and has great potential for protein analysis.  相似文献   

17.
A platform for rapid on-line protein digestion of protein mixtures for direct infusion to a mass spectrometer is presented. A mixture of protein A, staphylococcal enterotoxin B and cytochrome c was used as a model mixture injected on a gel filtration column and a trypsin reactor which were connected in series to a micro liquid chromatography (microLC) system. The peptides in the column eluate were analyzed with ESI tandem mass spectrometry, utilizing information dependent acquisition (IDA). In one step, the proteins in the mixture (microM concentrations) were concomitantly desalted, separated, digested and identified with an overall analysis time of less than 40 min. Protein sequence coverage of 78-95% for the involved substances was achieved.  相似文献   

18.
The use of two different monoliths located in capillaries for on-line protein digestion, preconcentration of peptides and their separation has been demonstrated. The first monolith was used as support for covalent immobilization of pepsin. This monolith with well-defined porous properties was prepared by in situ copolymerization of 2-vinyl-4,4-dimethylazlactone and ethylene dimethacrylate. The second, poly(lauryl methacrylate-co-ethylene dimethacrylate) monolith with a different porous structure served for the preconcentration of peptides from the digest and their separation in reversed-phase liquid chromatography mode. The top of the separation capillary was used as a preconcentrator, thus enabling the digestion of very dilute solutions of proteins in the bioreactor and increasing the sensitivity of the mass spectrometric detection of the peptides using a time-of-flight mass spectrometer with electrospray ionization. Myoglobin, albumin, and hemoglobin were digested to demonstrate feasibility of the concept of using the two monoliths in-line. Successive protein injections confirmed both the repeatability of the results and the ability to reuse the bioreactor for at least 20 digestions.  相似文献   

19.
Immobilized proteolytic enzyme cartridges were used to rapidly digest neu differentiation factor EGF domain in order to obtain improved peptide maps useful for assignment of disulfide linkages. The procedure described here involves an on-line digestion of proteins using immobilized trypsin and endoproteinase Glu-C cartridges connected in series, followed by on-line RP-HPLC separation of the peptides. The entire process can be automated using a commercially available workstation; and the total time required for both proteolytic digestion and the HPLC separation can be shortened to within 1 h. Using these immobilized columns, we demonstrated that disulfide structure assignment of the EGF domains of recombinant human neu differentiation factor can be performed by isolation of individual disulfide-containing peptides followed by assignment of disulfide linkages with prompt fragmentation of peptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The use of immobilized protease cartridges in tandem eliminates undesirable digestion artifacts associated with longer digestion time and higher protease-to-substrate ratio and results in the development of a reproducible and high quality peptide map.  相似文献   

20.
以石英毛细管作为酶固定化的载体, 在毛细管内壁上逐步合成树枝形大分子聚酰胺-胺(PAMAM), 再通过交联剂戊二醛将胰蛋白酶直接键合到该大分子的末端氨基上, 并对酶固定化条件进行了优化, 制备了多层酶反应器. 利用该酶反应器对马心细胞色素C等蛋白质进行了酶切, 并对酶切的条件进行了优化. 实验结果表明, 该固定化酶反应器具有较高的酶切效率、良好的重现性和稳定性, 可用于蛋白质组学的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号