首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We performed first-principles calculations to study the structure and stability of Si(70) cluster. The results from the density functional theory calculation with the Becke-Lee-Yang-Parr and B3LYP exchange-correlation functionals suggest that a diamond-like Si(70) isomer is the most stable structure, in contrast to endohedral fullerenes of Si(70). On the other hand, an endohedral fullerene of Si(16)@Si(54) was found to be slightly lower in energy than the diamond-like Si(70) if the Predew-Burke-Ernzerhof functional is used. Our calculation results suggest that around n = 70, the endohedral fullerene and diamond-like isomer are expected to be competitive. The calculated IR vibration spectra, ionization potential, and inverse mobilities were also calculated and discussed.  相似文献   

2.
We present a theoretical study of the eigenstates of the endohedral fullerene Li@C60 for the case that the C 60 cage is assumed to be stationary. These eigenstates represent the three-dimensional nuclear dynamics of a Li atom confined to the interior of the carbon cage. The potential function employed, based on density functional theory calculations that we performed, has a variety of minima corresponding to complex hindered rotations of the Li atom in a shell about 1.5 A from the cage center. The energies and wave functions of the lowest 1200 states have been calculated, and the characteristic features of selected states and the far-IR spectrum are discussed. An interesting result of the calculations is the finding that the ground-state eigenfunction can become strongly localized when the cage atoms are just slightly perturbed from icosahedral symmetry.  相似文献   

3.
The structures, stabilities, and electronic properties of the endohedral fullerene GeH4@C60 have been systematically studied by using the hybrid DFT-B3PW91 functional in conjunction with 6-31G(d) basis sets. Our calculated results show that the GeH4 molecule is more compact in the center of the C60 cage and exists in molecular form inside the fullerene. The Zero-Point and BSSE corrected binding energy of GeH4@C60 is −1.77 eV. The calculated HOMO–LUMO energy gap, the vertical ionization potentials (VIP) and vertical electron affinities (VEA) are similar to that of C60 cage. It is indicated that GeH4@C60 also seems to be very stable species. Natural population analysis on the GeH4@C60 reveals that the central GeH4 only gain −0.06 charges from the C60 cage. Additionally, the vibrational frequencies and active infrared intensities of GeH4@C60 are also discussed.  相似文献   

4.
The endohedral dimetallofullerene having a non-IPR fullerene cage, Ce2@C72, is spectroscopically and theoretically characterized. The (13)C NMR measurements display large temperature-dependent signals caused by paramagnetic shifts, indicating that the Ce atoms are located near the two fused pentagons in the C72 cage. Theoretical calculations are performed to clarify the metal position, which are in good agreement with the result obtained by the paramagnetic (13)C NMR analysis. Electrochemical measurements reveal that Ce2@C72 has particularly lower oxidation and higher reduction potentials than other endohedral dimetallofullerenes.  相似文献   

5.
The endohedral fullerene CH4@C84 has been studied using density functional theory (DFT) and second‐order Møller–Plesset perturbation theory (MP2). In addition to the structure with a C? H bond of CH4 in a tetrahedral pocket conformation, we find an alternative minimum, very close in energy (6.3–9.5 kJ/mol higher according to the level of theory), with the methane inverted, which we call the antipocket conformation. Computed IR spectra are reported for CH4@C84 and also for the reference system CH4@C60. The calculated vibrational levels, in a harmonic approximation, reveal close‐lying translational, librational, and shell‐vibrational modes. The results are also presented for the isoelectronic species NH@C60. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

6.
We have measured the temperature dependence of the infrared spectra of a hydrogen molecule trapped inside a C(60) cage, H(2)@C(60), in the temperature range from 6 to 300 K and analyzed the excitation spectrum by using a five-dimensional model of a vibrating rotor in a spherical potential. The electric dipole moment is induced by the translational motion of endohedral H(2) and gives rise to an infrared absorption process where one translational quantum is created or annihilated, ΔN = ±1. Some fundamental transitions, ΔN = 0, are observed as well. The rotation of endohedral H(2) is unhindered but coupled to the translational motion. The isotropic and translation-rotation coupling part of the potential are anharmonic and different in the ground and excited vibrational states of H(2). The vibrational frequency and the rotational constant of endohedral H(2) are smaller than those of H(2) in the gas phase. The assignment of lines to ortho- and para-H(2) is confirmed by measuring spectra of a para enriched sample of H(2)@C(60) and is consistent with the earlier interpretation of the low temperature infrared spectra [Mamone et al., J. Chem. Phys. 130, 081103 (2009)].  相似文献   

7.
We report the synthesis of two cyclic β-pyrrole unsubstituted meso-tetraphenyl bisporphyrins in which the porphyrin units are connected by two 2,3-hexadiynyl-1,6-dioxo or two hexyl-1,6-dioxo spacers, respectively. Both cyclic porphyrin dimers exist in solution as mixtures of two conformational isomers. In the solid state, the receptor with diynyl spacers forms a 1:1 complex with the icosahedral (I(h)) isomer of the trimetallic nitride endohedral fullerene Sc(3)N@C(80). In this complex the receptor adopts a scoop-shaped conformation having a dihedral angle of 87.25° between the two porphyrin planes. The hexyl spaced analogue, however, adopts a similar conformation upon encapsulation of one molecule of Sc(3)N@C(80) in a self-assembled dimeric capsule. The capsular complexes pack in columns and render the fullerene units completely isolated. In toluene solution, (1)H NMR experiments indicate that the endohedral fullerene Sc(3)N@C(80) is exclusively bound by the expanded isomer of both dimers. UV-vis and fluorescence titration experiments confirmed the existence of strong π-π interactions between the fullerene Sc(3)N@C(80) and the flexible bisporphyrin dimer with hexyl spacers. At micromolar concentration, the flexible receptor forms only a 1:1 complex with the endohedral fullerene with stability constant value of K(a) = 2.6 ± 0.3 × 10(5) M(-1).  相似文献   

8.
Selected points on the potential energy surface for the complexes Rg@C(60) (Rg = He, Ne, Ar, Kr) are calculated with various theoretical methods, like symmetry-adapted perturbation theory with monomers described by density functional theory (DFT-SAPT), supermolecular M?ller-Plesset theory truncated on the second order (MP2), spin-component-scaled MP2 (SCS-MP2), supermolecular density functional theory with empirical dispersion correction (DFT+Disp), and the recently developed MP2C method that improves the MP2 method for long-range electron correlation effects. A stabilization of the endohedral complex is predicted by all methods, but the depth of the potential energy well is overestimated by the DFT+Disp and MP2 approaches. On the other hand, the MP2C model agrees well with DFT-SAPT, which serves as the reference. The performance of SCS-MP2 is mixed: it produces too low interaction energies for the two heavier guests, while its accuracy for He@C(60) and Ne@C(60) is similar to that of MP2C. Fitting formulas for the main interaction energy components, i.e. the dispersion and first-order repulsion energies are proposed, which are applicable for both endo- and exohedral cases. For all examined methods density fitting is used to evaluate two-electron repulsion integrals, which is indispensable to allow studies of noncovalent complexes of this size. It has been found that density-fitting auxiliary basis sets cannot be used in a black-box fashion for the calculation of the first-order SAPT electrostatic energy, and that the quality of these basis sets should be always carefully examined in order to avoid an unphysical long-range behavior.  相似文献   

9.
Theoretical evidence for the first neutral and anionic global-minimum structures possessing a planar pentacoordinate carbon is reported.  相似文献   

10.
Bisadduct isomers of a H(2)@C(60) derivative with nitroxide addends have been synthesized, isolated and characterized. The (1)H NMRs of endohedral H(2) of the major isomers show well-separated chemical shifts, which could be useful for structural assignment and identification of the purity of the C(60) bisadduct isomers.  相似文献   

11.
The first non-IPR C(76) cage based on a mixed metal nitride cluster, DySc(2)N@C(76), was successfully synthesized and isolated. DySc(2)N@C(76) is a stable fullerene with a small band gap of 0.96 eV. According to the FTIR spectroscopic study in combination with extensive DFT calculations, the cage structure of DySc(2)N@C(76) has been assigned to the non-IPR C(s): 17490-I isomer having two pairs of the adjacent pentagons. DySc(2)N@C(76)provides the first example of stabilization of the non-IPR C(76) cage by encapsulation of an asymmetric DySc(2)N mixed cluster, revealing the role of the cluster structure on the stability of the fullerene cage. As the asymmetric DySc(2)N cluster has a more suitable geometry for the inner space of the C(76) cage compared to that of the homogeneous clusters like Sc(3)N or Dy(3)N, the highest yield for C(76)-based cluster fullerenes with the Dy(x)Sc(3)-(x)N mixed nitride cluster is achieved for the DySc(2)N@C(76)  相似文献   

12.
The core–shell structure of endohedral fullerene-based anisotropic magnetic molecules of high spin with long coherence time could help scale up quantum systems. In this research, by amination of Gd@C82 with morpholine, three derivatives are functionalized with 5, 7 and 9 morpholine groups providing an interesting model to investigate the relationship between the quantum coherence and the spin environment. The original radical located on the carbon cage is successfully quenched, affording a quantum phase memory times (TM) over 5 μs at 5 K. By increasing the number of substitution groups, spin–lattice relaxation times (T1) also show significant enhancement due to the interaction variation between the molecules and the environments. We found that the TM of the three molecules show no obvious difference below 10 K, while they are limited by T1 at higher temperatures. In this work, the variable functional groups are able to tune both T1 and TM, offering the possibility for application of high-spin magnetic molecules in the field of quantum information processing.

Amination of the endohedral fullerene Gd@C82 exhibits enhanced quantum phase memory time and tunable substitution effect for quantum information processing.  相似文献   

13.
14.
A non isolated pentagon rule metallic sulfide clusterfullerene, Sc(2)S@C(s)(10528)-C(72), has been isolated from a raw mixture of Sc(2)S@C(2n) (n = 35-50) obtained by arc-discharging graphite rods packed with Sc(2)O(3) and graphite powder under an atmosphere of SO(2) and helium. Multistage HPLC methods were utilized to isolate and purify the Sc(2)S@C(72). The purified Sc(2)S@C(s)(10528)-C(72) was characterized by mass spectrometry, UV-vis-NIR absorption spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic analysis unambiguously elucidated that the C(72) fullerene cage violates the isolated pentagon rule, and the cage symmetry was assigned to C(s)(10528)-C(72). The electrochemical behavior of Sc(2)S@C(s)(10528)-C(72) shows a major difference from those of Sc(2)S@C(s)(6)-C(82) and Sc(2)S@C(3v)(8)-C(82) as well as the other metallic clusterfullerenes. Computational studies show that the Sc(2)S cluster transfers four electrons to the C(72) cage and C(s)(10528)-C(72) is the most stable cage isomer for both empty C(72)(4-) and Sc(2)S@C(72), among the many possibilities. The structural differences between the reported fullerenes with C(72) cages are discussed, and it is concluded that both the transfer of four electrons to the cage and the geometrical requirements of the encaged Sc(2)S cluster play important roles in the stabilization of the C(s)(10528)-C(72) cage.  相似文献   

15.
Photolysis experiments were performed on the H2-CD4-NH3 and the He-CD4-NH3 systems. The photolysis (1849 angstoms) involved only NH3. Mixtures of H2:CD4:NH3 included all combinations of the ratios (200,400,800):(10,20,40):4. Two He:CD4:NH3 mixtures were examined where the ratios equalled the combinations 100:(10,20):4. Abstraction of a D from CD4 by the photolytically produced hot hydrogen from ammonia was monitored by mass spectrometric determination of HD. Both experiment and semiempirical hot-atom theory show that H2 is a very poor thermalizer of hot hydrogens with excess kinetic energy of about 2 eV. Applications of the hard-sphere collision model to the H2-CD4-NH3 system results in predicted ratios of net HD production to NH3 decomposition that were two orders of magnitude smaller than the experimental ratios. On the other hand, helium is found to be a very efficient thermalizer; here, the classical model yields reasonable agreement with experiments. Application of a semiempirical hot-atom program gave quantitative agreement with experiment for either system.  相似文献   

16.
By the DFT method with the planar wave basis set and in the PAW approximation the geometric and electronic structures of four supramolecular compounds of porphyrin and fullerene molecules in the crystalline state are performed: H2TPP·C60·3 toluene, H2TpivPP·C60, H2T3,5-dimethylPP·C70·4 toluene, and NiT4-methylPP·2C70·2 toluene. The geometry is optimized using the PBE functional and the Grimme DFT-D2 dispersion interaction correction. The electronic structure and absorbance spectra are calculated using the HSE functional. It is shown that the H2TPP·C60·3 toluene structure having a sufficiently wide absorbance wavelength range, which results in a photoinduced electron transition from the higher occupied states formed by porphyrin molecules to the lower unoccupied states formed by fullerene molecules, is most promising for the design of photogalvanic elements.  相似文献   

17.
New endohedral fullerene C(70) encapsulating one and two H(2) molecule(s) has been synthesized by organic reactions, the so-called "molecular surgery" method, and the first organic derivatization of H(2)@C(70) and (H(2))(2)@C(70) has been conducted. Although the interaction between inner H(2) and outer C(70) is rather weak, (H(2))(2)@C(70) exhibits smaller equilibrium constants in the Diels-Alder reaction with 9,10-dimethylanthracene than those of H(2)@C(70).  相似文献   

18.
The sorption capacity of polyoxometallates with a buckyball structure (fullerene)
$ (NH_4 )_{42} [Mo_{72}^{VI} Mo_{60}^V O_{372} (H_3 CCOO)_{30} (H_0 O)_{72} ] \cdot 30H_3 CCOONH_4 \cdot 250H_2 O $ (NH_4 )_{42} [Mo_{72}^{VI} Mo_{60}^V O_{372} (H_3 CCOO)_{30} (H_0 O)_{72} ] \cdot 30H_3 CCOONH_4 \cdot 250H_2 O   相似文献   

19.
To improve the understanding of the charge transfer (CT) interaction of [70]fullerene with electron donors, interaction of [70]fullerene with a series of phenols, e.g., phenol, resorcinol and p-quinol were studied in 1,4-dioxan medium using absorption spectroscopy. An absorption band due to CT transition was observed in the visible region. The experimental CT transition energies (h nuCT) are well correlated (through Mulliken's equation) with the vertical ionisation potentials (I(D)v) of the series of phenols studied. From an analysis of this correlation degrees of charge transfer for the [70]fullerene-phenol complexes were estimated. The degrees of charge transfer in the ground state of the complexes have been found to be very low (<2%). The h nuCT values change systematically as the number and position of the -OH groups change on the aromatic ring of the phenol moiety. From the trends in the h nuCT values, the Hückel parameters (h(O) and k(C-O)) for the -OH group were obtained in a straightforward way and the values so obtained, viz., 1.91 and 1.0, respectively, are close to the ones (1.8 and 0.8) recommended by Streitwieser on the basis of other evidence. Oscillator strengths, transition dipole strengths and resonance energies of the [70]fullerene-phenol complexes were determined. Formation constants of the CT complexes were determined at four different temperatures from which enthalpies and entropies of formation of the complexes were estimated.  相似文献   

20.
We describe a photoswitch fabricated on indium tin oxide (ITO) as a self-assembled monolayer (SAM) of two fullerene molecules, a purely organic [60]fullerene that generates an anodic current and a [70]fullerene doped with a single iron atom. This device generates a bidirectional photocurrent upon irradiation at 340 and 490 nm. The new [70]fullerene iron complex bearing three rigid carboxylic acid legs, Fe[C(70)(C(6)H(4)C(6)H(4)COOH)(3)]Cp, generates only a cathodic current upon photoexcitation between 350 and 700 nm, whereas the organic [60]fullerene absorbs at wavelengths shorter than 500 nm. The quantum efficiency of the photocurrent generation by the mixed SAM is comparable to that of a single-component SAM, indicating that the individual diode molecules on ITO generate photocurrents independently with little cross talk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号